Short Communications: Estimates of the Distribution of the Maximumof a Random Field
Let $ \xi(t) $ be a random field with values in $ \bR^1$, defined for $ t \in T,\ T$ an arbitrary set. In this paper two-sided exponential estimates are derived for probabilities $ P(T,u) = \bP\{\sup_{t \in T} \xi(t)\break > u \} $: $$ C_1 g_2(u) \l \log P(T,\,u) + g_1(u) \l C_2 g_2(u), $$ where...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 1998-04, Vol.42 (2), p.302-310 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $ \xi(t) $ be a random field with values in $ \bR^1$, defined for $ t \in T,\ T$ an arbitrary set. In this paper two-sided exponential estimates are derived for probabilities $ P(T,u) = \bP\{\sup_{t \in T} \xi(t)\break > u \} $: $$ C_1 g_2(u) \l \log P(T,\,u) + g_1(u) \l C_2 g_2(u), $$ where $ g_1(u) $ is a convex function, $u \to \infty \Rightarrow \lim g_1'(u) = \infty$, $\lim [g_2(u)/g_1(u)] = 0$, $C_k$ are positive numbers independent of~$u$. |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/S0040585X97976167 |