Large-Deviation Probabilities for One-Dimensional Markov Chains. Part 2: Prestationary Distributions in the Exponential Case

This paper continues investigations of [A. A. Borovkov and A. D. Korshunov, Theory Probab.\ Appl., 41 (1996), pp. 1--24]. We consider a time-homogeneous and asymptotically space-homogeneous Markov chain $\{X(n)\}$ that takes values on the real line and has increments possessing a finite exponential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 2000-01, Vol.45 (3), p.379-405
Hauptverfasser: Borovkov, A. A., Korshunov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper continues investigations of [A. A. Borovkov and A. D. Korshunov, Theory Probab.\ Appl., 41 (1996), pp. 1--24]. We consider a time-homogeneous and asymptotically space-homogeneous Markov chain $\{X(n)\}$ that takes values on the real line and has increments possessing a finite exponential moment. The asymptotic behavior of the probability {\bf P}$\{X(n)\ge x\}$ is studied as~$x\to\infty$ for fixed or growing values of time~$n$. In particular, we extract the ranges of~$n$ within which this probability is asymptotically equivalent to the tail of a stationary distribution~$\pi(x)$ (the latter is studied in [A. A. Borovkov and A. D. Korshunov, Theory Probab. Appl., 41 (1996), pp.~1--24] and is detailed in section 27 of [A. A. Borovkov, Ergodicity and Stability of Stochastic Processes, Wiley, New York, 1998]).
ISSN:0040-585X
1095-7219
DOI:10.1137/S0040585X97978358