Second-order renewal theorem in the finite-means case

Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 2003, Vol.47 (1), p.127-132
Hauptverfasser: BALTRUNAS, A, OMEY, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 127
container_title Theory of probability and its applications
container_volume 47
creator BALTRUNAS, A
OMEY, E
description Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.
doi_str_mv 10.1137/S0040585X97979561
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914434591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554659051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</originalsourceid><addsrcrecordid>eNplUEtLAzEQDqJgrf4Ab4vgMZpp3kcpWoWChyp4W7LZCW5pszXZIv57s7TgQYZhBr7HMB8h18DuALi-XzEmmDTyw-pSUsEJmQCzkuoZ2FMyGWE64ufkIuc1Y0zNQE6IXKHvY0v71GKqEkb8dptq-MQ-4bbq4rhWoYvdgHSLLubKu4yX5Cy4Tcar45yS96fHt_kzXb4uXuYPS-qL-UCdD7o1rdWhMVYpKYFbwxshmDNGNaWFMko3Gjk3s_KHbQEgND4YxrTWfEpuDr671H_tMQ_1ut-nWE7WFoTgQlooJDiQfOpzThjqXeq2Lv3UwOoxnPpfOEVzezR22btNSC76Lv8JhbKaG-C_Jf9hmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914434591</pqid></control><display><type>article</type><title>Second-order renewal theorem in the finite-means case</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>BALTRUNAS, A ; OMEY, E</creator><creatorcontrib>BALTRUNAS, A ; OMEY, E</creatorcontrib><description>Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97979561</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Exact sciences and technology ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><ispartof>Theory of probability and its applications, 2003, Vol.47 (1), p.127-132</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</citedby><cites>FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,4010,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14697381$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BALTRUNAS, A</creatorcontrib><creatorcontrib>OMEY, E</creatorcontrib><title>Second-order renewal theorem in the finite-means case</title><title>Theory of probability and its applications</title><description>Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.</description><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUEtLAzEQDqJgrf4Ab4vgMZpp3kcpWoWChyp4W7LZCW5pszXZIv57s7TgQYZhBr7HMB8h18DuALi-XzEmmDTyw-pSUsEJmQCzkuoZ2FMyGWE64ufkIuc1Y0zNQE6IXKHvY0v71GKqEkb8dptq-MQ-4bbq4rhWoYvdgHSLLubKu4yX5Cy4Tcar45yS96fHt_kzXb4uXuYPS-qL-UCdD7o1rdWhMVYpKYFbwxshmDNGNaWFMko3Gjk3s_KHbQEgND4YxrTWfEpuDr671H_tMQ_1ut-nWE7WFoTgQlooJDiQfOpzThjqXeq2Lv3UwOoxnPpfOEVzezR22btNSC76Lv8JhbKaG-C_Jf9hmA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>BALTRUNAS, A</creator><creator>OMEY, E</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2003</creationdate><title>Second-order renewal theorem in the finite-means case</title><author>BALTRUNAS, A ; OMEY, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALTRUNAS, A</creatorcontrib><creatorcontrib>OMEY, E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALTRUNAS, A</au><au>OMEY, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order renewal theorem in the finite-means case</atitle><jtitle>Theory of probability and its applications</jtitle><date>2003</date><risdate>2003</risdate><volume>47</volume><issue>1</issue><spage>127</spage><epage>132</epage><pages>127-132</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97979561</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-585X
ispartof Theory of probability and its applications, 2003, Vol.47 (1), p.127-132
issn 0040-585X
1095-7219
language eng
recordid cdi_proquest_journals_914434591
source LOCUS - SIAM's Online Journal Archive
subjects Exact sciences and technology
Mathematics
Probability and statistics
Probability theory and stochastic processes
Random variables
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
title Second-order renewal theorem in the finite-means case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20renewal%20theorem%20in%20the%20finite-means%20case&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=BALTRUNAS,%20A&rft.date=2003&rft.volume=47&rft.issue=1&rft.spage=127&rft.epage=132&rft.pages=127-132&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97979561&rft_dat=%3Cproquest_cross%3E2554659051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914434591&rft_id=info:pmid/&rfr_iscdi=true