Second-order renewal theorem in the finite-means case
Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu,...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 2003, Vol.47 (1), p.127-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | 1 |
container_start_page | 127 |
container_title | Theory of probability and its applications |
container_volume | 47 |
creator | BALTRUNAS, A OMEY, E |
description | Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey. |
doi_str_mv | 10.1137/S0040585X97979561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914434591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554659051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</originalsourceid><addsrcrecordid>eNplUEtLAzEQDqJgrf4Ab4vgMZpp3kcpWoWChyp4W7LZCW5pszXZIv57s7TgQYZhBr7HMB8h18DuALi-XzEmmDTyw-pSUsEJmQCzkuoZ2FMyGWE64ufkIuc1Y0zNQE6IXKHvY0v71GKqEkb8dptq-MQ-4bbq4rhWoYvdgHSLLubKu4yX5Cy4Tcar45yS96fHt_kzXb4uXuYPS-qL-UCdD7o1rdWhMVYpKYFbwxshmDNGNaWFMko3Gjk3s_KHbQEgND4YxrTWfEpuDr671H_tMQ_1ut-nWE7WFoTgQlooJDiQfOpzThjqXeq2Lv3UwOoxnPpfOEVzezR22btNSC76Lv8JhbKaG-C_Jf9hmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914434591</pqid></control><display><type>article</type><title>Second-order renewal theorem in the finite-means case</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>BALTRUNAS, A ; OMEY, E</creator><creatorcontrib>BALTRUNAS, A ; OMEY, E</creatorcontrib><description>Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97979561</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Exact sciences and technology ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><ispartof>Theory of probability and its applications, 2003, Vol.47 (1), p.127-132</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</citedby><cites>FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3172,4010,27902,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14697381$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BALTRUNAS, A</creatorcontrib><creatorcontrib>OMEY, E</creatorcontrib><title>Second-order renewal theorem in the finite-means case</title><title>Theory of probability and its applications</title><description>Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.</description><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUEtLAzEQDqJgrf4Ab4vgMZpp3kcpWoWChyp4W7LZCW5pszXZIv57s7TgQYZhBr7HMB8h18DuALi-XzEmmDTyw-pSUsEJmQCzkuoZ2FMyGWE64ufkIuc1Y0zNQE6IXKHvY0v71GKqEkb8dptq-MQ-4bbq4rhWoYvdgHSLLubKu4yX5Cy4Tcar45yS96fHt_kzXb4uXuYPS-qL-UCdD7o1rdWhMVYpKYFbwxshmDNGNaWFMko3Gjk3s_KHbQEgND4YxrTWfEpuDr671H_tMQ_1ut-nWE7WFoTgQlooJDiQfOpzThjqXeq2Lv3UwOoxnPpfOEVzezR22btNSC76Lv8JhbKaG-C_Jf9hmA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>BALTRUNAS, A</creator><creator>OMEY, E</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2003</creationdate><title>Second-order renewal theorem in the finite-means case</title><author>BALTRUNAS, A ; OMEY, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-acf7d8d97fb89665513983b440a886b88646867b7e33821139d111fbcf8007773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALTRUNAS, A</creatorcontrib><creatorcontrib>OMEY, E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALTRUNAS, A</au><au>OMEY, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order renewal theorem in the finite-means case</atitle><jtitle>Theory of probability and its applications</jtitle><date>2003</date><risdate>2003</risdate><volume>47</volume><issue>1</issue><spage>127</spage><epage>132</epage><pages>127-132</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97979561</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 2003, Vol.47 (1), p.127-132 |
issn | 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_journals_914434591 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Exact sciences and technology Mathematics Probability and statistics Probability theory and stochastic processes Random variables Sciences and techniques of general use Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) |
title | Second-order renewal theorem in the finite-means case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20renewal%20theorem%20in%20the%20finite-means%20case&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=BALTRUNAS,%20A&rft.date=2003&rft.volume=47&rft.issue=1&rft.spage=127&rft.epage=132&rft.pages=127-132&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97979561&rft_dat=%3Cproquest_cross%3E2554659051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914434591&rft_id=info:pmid/&rfr_iscdi=true |