Second-order renewal theorem in the finite-means case

Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 2003, Vol.47 (1), p.127-132
Hauptverfasser: BALTRUNAS, A, OMEY, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.
ISSN:0040-585X
1095-7219
DOI:10.1137/S0040585X97979561