Second-order renewal theorem in the finite-means case
Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu,...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 2003, Vol.47 (1), p.127-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $F$ be a distribution function (d.f.) on $(0, \infty )$ and let~$U$ be the renewal function associated with $F$. If $F$ has a finite first moment~$\mu$, then it is well known that $U(t)$ asymptotically equals $t/\mu$. It is also well known that $U(t)-t/\mu $ asymptotically behaves as $S(t)/\mu, $ where~$S$ denotes the integral of the integrated tail distribution~$F_1$ of~$F$. In this paper we discuss the rate of convergence of $U(t)-t/\mu -S(t)/\mu $ for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey. |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/S0040585X97979561 |