Limit Theorem for an Intermediate Subcritical Branching Process in a Random Environment

The asymptotic behavior of the survival probability of an intermediate subcritical branching process $Z_n$ in a random environment is found when a transformation of the reproduction law of the offspring number is attracted to a stable law $\alpha\in (1,2]$. It is shown that the distribution of the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 2004, Vol.48 (3), p.481-492
1. Verfasser: Vatutin, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The asymptotic behavior of the survival probability of an intermediate subcritical branching process $Z_n$ in a random environment is found when a transformation of the reproduction law of the offspring number is attracted to a stable law $\alpha\in (1,2]$. It is shown that the distribution of the random variable $\{Z_n\}$ given $Z_n>0$ converges to a nondegenerate distribution as $n\to\infty$.
ISSN:0040-585X
1095-7219
DOI:10.1137/S0040585X97980518