Second-Order Asymptotic Behavior of Subexponential Infinitely Divisible Distributions
In this paper, a new way to obtain the rate of convergence for subexponential infinitely divisible distributions is proposed. Namely, for the subexponential infinitely divisible distributionfunction $H(x)$ with the Levy measure $\mu,$ the estimate of difference $$ 1-H(x)-\mu((x,\infty)) $$ as $x\to\...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 2004-12, Vol.48 (4), p.703-710 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new way to obtain the rate of convergence for subexponential infinitely divisible distributions is proposed. Namely, for the subexponential infinitely divisible distributionfunction $H(x)$ with the Levy measure $\mu,$ the estimate of difference $$ 1-H(x)-\mu((x,\infty)) $$ as $x\to\infty$ has been obtained. |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/S0040585X97980762 |