On Probability and Moment Inequalities for Supermartingales and Martingales

The probability inequality for $\max_{k\leq n}S_k$, where $S_k=\sum_{j=1}^kX_j$, is proved under the assumption that the sequence $S_k$, ${k=1,\ldots, n}$ is a supermartingale. This inequality is stated in terms of probabilities ${\bf P}(X_j>y) $ and conditional variances of random variables $X_j...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 2007, Vol.51 (2), p.367-377
1. Verfasser: Nagaev, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The probability inequality for $\max_{k\leq n}S_k$, where $S_k=\sum_{j=1}^kX_j$, is proved under the assumption that the sequence $S_k$, ${k=1,\ldots, n}$ is a supermartingale. This inequality is stated in terms of probabilities ${\bf P}(X_j>y) $ and conditional variances of random variables $X_j$, $j=1,\ldots, n$. As a simple consequence the well-known moment inequality due to Burkholder is deduced. Numerical bounds are given for constants in Burkholder's inequality.
ISSN:0040-585X
1095-7219
DOI:10.1137/S0040585X97982438