On Probability and Moment Inequalities for Supermartingales and Martingales
The probability inequality for $\max_{k\leq n}S_k$, where $S_k=\sum_{j=1}^kX_j$, is proved under the assumption that the sequence $S_k$, ${k=1,\ldots, n}$ is a supermartingale. This inequality is stated in terms of probabilities ${\bf P}(X_j>y) $ and conditional variances of random variables $X_j...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 2007, Vol.51 (2), p.367-377 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The probability inequality for $\max_{k\leq n}S_k$, where $S_k=\sum_{j=1}^kX_j$, is proved under the assumption that the sequence $S_k$, ${k=1,\ldots, n}$ is a supermartingale. This inequality is stated in terms of probabilities ${\bf P}(X_j>y) $ and conditional variances of random variables $X_j$, $j=1,\ldots, n$. As a simple consequence the well-known moment inequality due to Burkholder is deduced. Numerical bounds are given for constants in Burkholder's inequality. |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/S0040585X97982438 |