Axiomatic Definition of the Value of a Matrix Game
Let a real function f, whose argument is a matrix $A$, satisfy the following axioms: 1. $f(\bar A) > f(A)$ if $\bar A > A$ ; 2. $f(\tilde A) = f(A)$ if $\tilde A$ differs from $A$ only by a row, which is dominated by others; 3. $f( - A^T ) = - f(A)$, the index $T$ stands for transposition; 4....
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 1963-01, Vol.8 (3), p.304-307 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let a real function f, whose argument is a matrix $A$, satisfy the following axioms: 1. $f(\bar A) > f(A)$ if $\bar A > A$ ; 2. $f(\tilde A) = f(A)$ if $\tilde A$ differs from $A$ only by a row, which is dominated by others; 3. $f( - A^T ) = - f(A)$, the index $T$ stands for transposition; 4. $f(x) > x$ for a real number $x$. Then $f(A)$ is the game value function. Axioms $1 - 4$ are independent. Another similar set of axioms is given. |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/1108035 |