Axiomatic Definition of the Value of a Matrix Game

Let a real function f, whose argument is a matrix $A$, satisfy the following axioms: 1. $f(\bar A) > f(A)$ if $\bar A > A$ ; 2. $f(\tilde A) = f(A)$ if $\tilde A$ differs from $A$ only by a row, which is dominated by others; 3. $f( - A^T ) = - f(A)$, the index $T$ stands for transposition; 4....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 1963-01, Vol.8 (3), p.304-307
1. Verfasser: Vilkas, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let a real function f, whose argument is a matrix $A$, satisfy the following axioms: 1. $f(\bar A) > f(A)$ if $\bar A > A$ ; 2. $f(\tilde A) = f(A)$ if $\tilde A$ differs from $A$ only by a row, which is dominated by others; 3. $f( - A^T ) = - f(A)$, the index $T$ stands for transposition; 4. $f(x) > x$ for a real number $x$. Then $f(A)$ is the game value function. Axioms $1 - 4$ are independent. Another similar set of axioms is given.
ISSN:0040-585X
1095-7219
DOI:10.1137/1108035