On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle

In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 1964-01, Vol.9 (1), p.125-131
1. Verfasser: Nevel’son, M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1
container_start_page 125
container_title Theory of probability and its applications
container_volume 9
creator Nevel’son, M. B.
description In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown that $\lim _{\varepsilon \to 0} p_\varepsilon (x) = p_0 (x)$. We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure $\mu _\varepsilon (v)$ is concentrated as $\varepsilon \to 0$.
doi_str_mv 10.1137/1109016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_913506691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552663701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c971-b4fbbe581c630b7967c7d6bb0fb475530bc3a1feeecf10738863508e1d4ffe873</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgreJfCF48rWaaTbJ71PpVqFSwB29rkk5oynZTk92K_96t7UEYePM-mIFHyCWwGwCubgFYyUAekUG_iEyNoDwmA8ZylolCfJySs5RWjDE5AjEgn7OGtkuk97jUWx8iDe6PT5qtjl43LX1FnbqIO0PTB-9cl3xo6FsMFlOi375d0ve1rut_Zj-ajn20NZ6TE6frhBcHHJL50-N8_JJNZ8-T8d00s6WCzOTOGBQFWMmZUaVUVi2kMcyZXAnRa5ZrcIhoHTDFi0JywQqERe4cFooPydX-7CaGrw5TW61CF5v-Y1VCH5WyhyG53odsDClFdNUm-rWOPxWwaldedSiP_wLKpGAp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913506691</pqid></control><display><type>article</type><title>On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Nevel’son, M. B.</creator><creatorcontrib>Nevel’son, M. B.</creatorcontrib><description>In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown that $\lim _{\varepsilon \to 0} p_\varepsilon (x) = p_0 (x)$. We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure $\mu _\varepsilon (v)$ is concentrated as $\varepsilon \to 0$.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/1109016</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Dynamical systems ; Neighborhoods ; Stochastic models ; Theorems ; Translations</subject><ispartof>Theory of probability and its applications, 1964-01, Vol.9 (1), p.125-131</ispartof><rights>[Copyright] © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c971-b4fbbe581c630b7967c7d6bb0fb475530bc3a1feeecf10738863508e1d4ffe873</citedby><cites>FETCH-LOGICAL-c971-b4fbbe581c630b7967c7d6bb0fb475530bc3a1feeecf10738863508e1d4ffe873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Nevel’son, M. B.</creatorcontrib><title>On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle</title><title>Theory of probability and its applications</title><description>In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown that $\lim _{\varepsilon \to 0} p_\varepsilon (x) = p_0 (x)$. We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure $\mu _\varepsilon (v)$ is concentrated as $\varepsilon \to 0$.</description><subject>Dynamical systems</subject><subject>Neighborhoods</subject><subject>Stochastic models</subject><subject>Theorems</subject><subject>Translations</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1964</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNUE1LAzEQDaJgreJfCF48rWaaTbJ71PpVqFSwB29rkk5oynZTk92K_96t7UEYePM-mIFHyCWwGwCubgFYyUAekUG_iEyNoDwmA8ZylolCfJySs5RWjDE5AjEgn7OGtkuk97jUWx8iDe6PT5qtjl43LX1FnbqIO0PTB-9cl3xo6FsMFlOi375d0ve1rut_Zj-ajn20NZ6TE6frhBcHHJL50-N8_JJNZ8-T8d00s6WCzOTOGBQFWMmZUaVUVi2kMcyZXAnRa5ZrcIhoHTDFi0JywQqERe4cFooPydX-7CaGrw5TW61CF5v-Y1VCH5WyhyG53odsDClFdNUm-rWOPxWwaldedSiP_wLKpGAp</recordid><startdate>196401</startdate><enddate>196401</enddate><creator>Nevel’son, M. B.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>196401</creationdate><title>On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle</title><author>Nevel’son, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c971-b4fbbe581c630b7967c7d6bb0fb475530bc3a1feeecf10738863508e1d4ffe873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1964</creationdate><topic>Dynamical systems</topic><topic>Neighborhoods</topic><topic>Stochastic models</topic><topic>Theorems</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nevel’son, M. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nevel’son, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle</atitle><jtitle>Theory of probability and its applications</jtitle><date>1964-01</date><risdate>1964</risdate><volume>9</volume><issue>1</issue><spage>125</spage><epage>131</epage><pages>125-131</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown that $\lim _{\varepsilon \to 0} p_\varepsilon (x) = p_0 (x)$. We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure $\mu _\varepsilon (v)$ is concentrated as $\varepsilon \to 0$.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/1109016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-585X
ispartof Theory of probability and its applications, 1964-01, Vol.9 (1), p.125-131
issn 0040-585X
1095-7219
language eng
recordid cdi_proquest_journals_913506691
source LOCUS - SIAM's Online Journal Archive
subjects Dynamical systems
Neighborhoods
Stochastic models
Theorems
Translations
title On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Behavior%20of%20the%20Invariant%20Measure%20of%20a%20Diffusion%20Process%20with%20Small%20Diffusion%20on%20a%20Circle&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Nevel%E2%80%99son,%20M.%20B.&rft.date=1964-01&rft.volume=9&rft.issue=1&rft.spage=125&rft.epage=131&rft.pages=125-131&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/1109016&rft_dat=%3Cproquest_cross%3E2552663701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913506691&rft_id=info:pmid/&rfr_iscdi=true