On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle

In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 1964-01, Vol.9 (1), p.125-131
1. Verfasser: Nevel’son, M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown that $\lim _{\varepsilon \to 0} p_\varepsilon (x) = p_0 (x)$. We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure $\mu _\varepsilon (v)$ is concentrated as $\varepsilon \to 0$.
ISSN:0040-585X
1095-7219
DOI:10.1137/1109016