On the Behavior of the Invariant Measure of a Diffusion Process with Small Diffusion on a Circle
In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown t...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 1964-01, Vol.9 (1), p.125-131 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we examine the behavior of the invariant measure $\mu _\varepsilon (v) = \int_v {p_\varepsilon } (x)dx$ of a Markov process, when the diffusion coefficient is a small parameter. In the case when the bounded dynamical system has an invariant measure with density $p_0 (x)$ we have shown that $\lim _{\varepsilon \to 0} p_\varepsilon (x) = p_0 (x)$. We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure $\mu _\varepsilon (v)$ is concentrated as $\varepsilon \to 0$. |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/1109016 |