Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet
The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2011-12, Vol.116 (F4), p.n/a, Article F04035 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6–41% above spring velocity lasting ∼40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for ∼1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to (1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and (2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow.
Key Points
The ablation zone of the Greenland Ice Sheet speeds up during summer by 6‐41%
Diurnal melt pulses appear to drive sliding, and the effect decreases over summer
Most supraglacial lake drainages have a small effect on ice sheet velocity |
---|---|
ISSN: | 0148-0227 2169-9003 2156-2202 2169-9011 |
DOI: | 10.1029/2010JF001934 |