Speedups and Energy Reductions From Mapping DSP Applications on an Embedded Reconfigurable System

This paper presents performance improvements and energy savings from mapping real-world benchmarks on an embedded single-chip platform that includes coarse-grained reconfigurable logic with a microprocessor. The reconfigurable hardware is a 2-D array of processing elements connected with a mesh-like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2007-12, Vol.15 (12), p.1362-1366
Hauptverfasser: Galanis, M.D., Dimitroulakos, G., Goutis, C.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents performance improvements and energy savings from mapping real-world benchmarks on an embedded single-chip platform that includes coarse-grained reconfigurable logic with a microprocessor. The reconfigurable hardware is a 2-D array of processing elements connected with a mesh-like network. Analytical results derived from mapping seven real-life digital signal processing applications, with the aid of an automated design flow, on six different instances of the system architecture are presented. Significant overall application speedups relative to an all-software solution, ranging from 1.81 to 3.99 are reported being close to theoretical speedup bounds. Additionally, the energy savings range from 43% to 71%. Finally, a comparison with a system coupling a microprocessor with a very long instruction word core shows that the microprocessor/coarse-grained reconfigurable array platform is more efficient in terms of performance and energy consumption.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2007.909812