Unsupervised extraction of visual attention objects in color images

This paper proposes a generic model for unsupervised extraction of viewer's attention objects from color images. Without the full semantic understanding of image content, the model formulates the attention objects as a Markov random field (MRF) by integrating computational visual attention mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2006-01, Vol.16 (1), p.141-145
Hauptverfasser: Han, J., Ngan, K.N., Mingjing Li, Hong-Jiang Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a generic model for unsupervised extraction of viewer's attention objects from color images. Without the full semantic understanding of image content, the model formulates the attention objects as a Markov random field (MRF) by integrating computational visual attention mechanisms with attention object growing techniques. Furthermore, we describe the MRF by a Gibbs random field with an energy function. The minimization of the energy function provides a practical way to obtain attention objects. Experimental results on 880 real images and user subjective evaluations by 16 subjects demonstrate the effectiveness of the proposed approach.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2005.859028