Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements
A many-to-many k-disjoint path cover (k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. We deal with the graph G/sub 0/ /spl oplus/ G/sub 1/ obtained from connecting two graphs G/sub 0/ and G/sub 1/ with n vertices e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2006-03, Vol.17 (3), p.227-240 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A many-to-many k-disjoint path cover (k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. We deal with the graph G/sub 0/ /spl oplus/ G/sub 1/ obtained from connecting two graphs G/sub 0/ and G/sub 1/ with n vertices each by n pairwise nonadjacent edges joining vertices in G/sub 0/ and vertices in G/sub 1/. Many interconnection networks such as hypercube-like interconnection networks can be represented in the form of G/sub 0/ /spl oplus/ G/sub 1/ connecting two lower dimensional networks G/sub 0/ and G/sub 1/. In the presence of faulty vertices and/or edges, we investigate many-to-many disjoint path coverability of G/sub 0/ /spl oplus/ G/sub 1/ and (G/sub 0/ /spl oplus/ G/sub 1/) /spl oplus/ (G/sub 2/ /spl oplus/ G/sub 3/ ), provided some conditions on the Hamiltonicity and disjoint path coverability of each graph G/sub i/ are satisfied, 0 /spl les/ i /spl les/ 3. We apply our main results to recursive circulant G(2/sup m/, 4) and a subclass of hypercube-like interconnection networks, called restricted HL-graphs. The subclasses includes twisted cubes, crossed cubes, multiply twisted cubes, Mobius cubes, Mcubes, and generalized twisted cubes. We show that all these networks of degree m with f or less faulty elements have a many-to-many k-DPC joining any k distinct source-sink pairs for any k /spl ges/ 1 and f /spl ges/ 0 such that f+2k /spl les/ m - 1. |
---|---|
ISSN: | 1045-9219 1558-2183 |
DOI: | 10.1109/TPDS.2006.37 |