Generic and maximal Jordan types
For a finite group scheme G over a field k of characteristic p>0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety we exhibit a “generic Jordan type” of M. In the very special case in which G=E is an element...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2007-06, Vol.168 (3), p.485-522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 3 |
container_start_page | 485 |
container_title | Inventiones mathematicae |
container_volume | 168 |
creator | Friedlander, Eric M. Pevtsova, Julia Suslin, Andrei |
description | For a finite group scheme G over a field k of characteristic p>0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety we exhibit a “generic Jordan type” of M. In the very special case in which G=E is an elementary abelian p-group, our construction specializes to the non-trivial observation that the Jordan type obtained by restricting M via a generic cyclic shifted subgroup does not depend upon a choice of generators for E. Furthermore, we construct the non-maximal support variety Γ(G)M, a closed subset of which is proper even when the dimension of M is not divisible by p. |
doi_str_mv | 10.1007/s00222-007-0037-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_912147949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544227591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-d6cda0cc54dd5cb28d07f6d16d269cbcc3be58ada20aebf24dcc20c48f6eaeac3</originalsourceid><addsrcrecordid>eNotkEFLxDAQhYMoWFd_gLfiPTqZpE1zlEVXZcGLnkM6SWGX3bYmXXD_vSn1MMyD95h5fIzdC3gUAPopASAizzKP1BwvWCGURC7Q6EtWZBu4MQKu2U1Ke4BsaixYuQl9iDsqXe_Lo_vdHd2h_Biid305nceQbtlV5w4p3P3vFft-fflav_Ht5-Z9_bzlJEU1cV-Td0BUKe8rarHxoLvai9pjbaglkm2oGucdggtth8oTIZBqujq44Eiu2MNyd4zDzymkye6HU-zzS2sECqWNMjkklhDFIaUYOjvG3DierQA7c7ALBzvLmYNF-Qe2LVBS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912147949</pqid></control><display><type>article</type><title>Generic and maximal Jordan types</title><source>SpringerLink Journals - AutoHoldings</source><creator>Friedlander, Eric M. ; Pevtsova, Julia ; Suslin, Andrei</creator><creatorcontrib>Friedlander, Eric M. ; Pevtsova, Julia ; Suslin, Andrei</creatorcontrib><description>For a finite group scheme G over a field k of characteristic p>0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety we exhibit a “generic Jordan type” of M. In the very special case in which G=E is an elementary abelian p-group, our construction specializes to the non-trivial observation that the Jordan type obtained by restricting M via a generic cyclic shifted subgroup does not depend upon a choice of generators for E. Furthermore, we construct the non-maximal support variety Γ(G)M, a closed subset of which is proper even when the dimension of M is not divisible by p.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-007-0037-2</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Fields (mathematics) ; Group theory ; Studies ; Subgroups</subject><ispartof>Inventiones mathematicae, 2007-06, Vol.168 (3), p.485-522</ispartof><rights>Springer-Verlag 2007.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-d6cda0cc54dd5cb28d07f6d16d269cbcc3be58ada20aebf24dcc20c48f6eaeac3</citedby><cites>FETCH-LOGICAL-c315t-d6cda0cc54dd5cb28d07f6d16d269cbcc3be58ada20aebf24dcc20c48f6eaeac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Friedlander, Eric M.</creatorcontrib><creatorcontrib>Pevtsova, Julia</creatorcontrib><creatorcontrib>Suslin, Andrei</creatorcontrib><title>Generic and maximal Jordan types</title><title>Inventiones mathematicae</title><description>For a finite group scheme G over a field k of characteristic p>0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety we exhibit a “generic Jordan type” of M. In the very special case in which G=E is an elementary abelian p-group, our construction specializes to the non-trivial observation that the Jordan type obtained by restricting M via a generic cyclic shifted subgroup does not depend upon a choice of generators for E. Furthermore, we construct the non-maximal support variety Γ(G)M, a closed subset of which is proper even when the dimension of M is not divisible by p.</description><subject>Fields (mathematics)</subject><subject>Group theory</subject><subject>Studies</subject><subject>Subgroups</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFLxDAQhYMoWFd_gLfiPTqZpE1zlEVXZcGLnkM6SWGX3bYmXXD_vSn1MMyD95h5fIzdC3gUAPopASAizzKP1BwvWCGURC7Q6EtWZBu4MQKu2U1Ke4BsaixYuQl9iDsqXe_Lo_vdHd2h_Biid305nceQbtlV5w4p3P3vFft-fflav_Ht5-Z9_bzlJEU1cV-Td0BUKe8rarHxoLvai9pjbaglkm2oGucdggtth8oTIZBqujq44Eiu2MNyd4zDzymkye6HU-zzS2sECqWNMjkklhDFIaUYOjvG3DierQA7c7ALBzvLmYNF-Qe2LVBS</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Friedlander, Eric M.</creator><creator>Pevtsova, Julia</creator><creator>Suslin, Andrei</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200706</creationdate><title>Generic and maximal Jordan types</title><author>Friedlander, Eric M. ; Pevtsova, Julia ; Suslin, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-d6cda0cc54dd5cb28d07f6d16d269cbcc3be58ada20aebf24dcc20c48f6eaeac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Fields (mathematics)</topic><topic>Group theory</topic><topic>Studies</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedlander, Eric M.</creatorcontrib><creatorcontrib>Pevtsova, Julia</creatorcontrib><creatorcontrib>Suslin, Andrei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedlander, Eric M.</au><au>Pevtsova, Julia</au><au>Suslin, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic and maximal Jordan types</atitle><jtitle>Inventiones mathematicae</jtitle><date>2007-06</date><risdate>2007</risdate><volume>168</volume><issue>3</issue><spage>485</spage><epage>522</epage><pages>485-522</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>For a finite group scheme G over a field k of characteristic p>0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety we exhibit a “generic Jordan type” of M. In the very special case in which G=E is an elementary abelian p-group, our construction specializes to the non-trivial observation that the Jordan type obtained by restricting M via a generic cyclic shifted subgroup does not depend upon a choice of generators for E. Furthermore, we construct the non-maximal support variety Γ(G)M, a closed subset of which is proper even when the dimension of M is not divisible by p.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-007-0037-2</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2007-06, Vol.168 (3), p.485-522 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_proquest_journals_912147949 |
source | SpringerLink Journals - AutoHoldings |
subjects | Fields (mathematics) Group theory Studies Subgroups |
title | Generic and maximal Jordan types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20and%20maximal%20Jordan%20types&rft.jtitle=Inventiones%20mathematicae&rft.au=Friedlander,%20Eric%20M.&rft.date=2007-06&rft.volume=168&rft.issue=3&rft.spage=485&rft.epage=522&rft.pages=485-522&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-007-0037-2&rft_dat=%3Cproquest_cross%3E2544227591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912147949&rft_id=info:pmid/&rfr_iscdi=true |