Generic and maximal Jordan types
For a finite group scheme G over a field k of characteristic p>0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety we exhibit a “generic Jordan type” of M. In the very special case in which G=E is an element...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2007-06, Vol.168 (3), p.485-522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a finite group scheme G over a field k of characteristic p>0, we associate new invariants to a finite dimensional kG-module M. Namely, for each generic point of the projectivized cohomological variety we exhibit a “generic Jordan type” of M. In the very special case in which G=E is an elementary abelian p-group, our construction specializes to the non-trivial observation that the Jordan type obtained by restricting M via a generic cyclic shifted subgroup does not depend upon a choice of generators for E. Furthermore, we construct the non-maximal support variety Γ(G)M, a closed subset of which is proper even when the dimension of M is not divisible by p. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-007-0037-2 |