The homotopy category of flat modules, and Grothendieck duality

Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2008-11, Vol.174 (2), p.255-308
1. Verfasser: Neeman, Amnon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 2
container_start_page 255
container_title Inventiones mathematicae
container_volume 174
creator Neeman, Amnon
description Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description of K ( R -Proj) generalizes to non-affine schemes; this will appear in Murfet’s thesis.
doi_str_mv 10.1007/s00222-008-0131-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_912141233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544216971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-8f0c7c7698673df50ca8bd121e06bc6d1f066d8e10ea5685f1917b813b0b7a583</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gsZgz3Oi9nQqiCglSJpcyW40cfpHGxkyH_HldBYmK6wznfudJHyC3CAwJUjxGAc84ABAPMkMEZmWGecYa8rs7JLMXA6hrhklzFuAdIYcVn5Gm9tXTrD773x5Fq1duNDyP1jrpW9fTgzdDaeE9VZ-gy-H5rO7Oz-ouaQbW7frwmF0610d783jn5fH1ZL97Y6mP5vnheMZ3zvGfCga50VdairDLjCtBKNAY5WigbXRp0UJZGWASrilIUDmusGoFZA02lCpHNyd20ewz-e7Cxl3s_hC69lHWayZFnWSrhVNLBxxisk8ewO6gwSgR50iQnTTJpkidNEhLDJyambrex4W_4f-gHXJNpJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912141233</pqid></control><display><type>article</type><title>The homotopy category of flat modules, and Grothendieck duality</title><source>SpringerLink Journals</source><creator>Neeman, Amnon</creator><creatorcontrib>Neeman, Amnon</creatorcontrib><description>Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description of K ( R -Proj) generalizes to non-affine schemes; this will appear in Murfet’s thesis.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-008-0131-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Inventiones mathematicae, 2008-11, Vol.174 (2), p.255-308</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-8f0c7c7698673df50ca8bd121e06bc6d1f066d8e10ea5685f1917b813b0b7a583</citedby><cites>FETCH-LOGICAL-c424t-8f0c7c7698673df50ca8bd121e06bc6d1f066d8e10ea5685f1917b813b0b7a583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-008-0131-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-008-0131-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Neeman, Amnon</creatorcontrib><title>The homotopy category of flat modules, and Grothendieck duality</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description of K ( R -Proj) generalizes to non-affine schemes; this will appear in Murfet’s thesis.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gsZgz3Oi9nQqiCglSJpcyW40cfpHGxkyH_HldBYmK6wznfudJHyC3CAwJUjxGAc84ABAPMkMEZmWGecYa8rs7JLMXA6hrhklzFuAdIYcVn5Gm9tXTrD773x5Fq1duNDyP1jrpW9fTgzdDaeE9VZ-gy-H5rO7Oz-ouaQbW7frwmF0610d783jn5fH1ZL97Y6mP5vnheMZ3zvGfCga50VdairDLjCtBKNAY5WigbXRp0UJZGWASrilIUDmusGoFZA02lCpHNyd20ewz-e7Cxl3s_hC69lHWayZFnWSrhVNLBxxisk8ewO6gwSgR50iQnTTJpkidNEhLDJyambrex4W_4f-gHXJNpJA</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Neeman, Amnon</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>The homotopy category of flat modules, and Grothendieck duality</title><author>Neeman, Amnon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-8f0c7c7698673df50ca8bd121e06bc6d1f066d8e10ea5685f1917b813b0b7a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neeman, Amnon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neeman, Amnon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The homotopy category of flat modules, and Grothendieck duality</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>174</volume><issue>2</issue><spage>255</spage><epage>308</epage><pages>255-308</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description of K ( R -Proj) generalizes to non-affine schemes; this will appear in Murfet’s thesis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00222-008-0131-0</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2008-11, Vol.174 (2), p.255-308
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_912141233
source SpringerLink Journals
subjects Mathematics
Mathematics and Statistics
title The homotopy category of flat modules, and Grothendieck duality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20homotopy%20category%20of%20flat%20modules,%20and%20Grothendieck%20duality&rft.jtitle=Inventiones%20mathematicae&rft.au=Neeman,%20Amnon&rft.date=2008-11-01&rft.volume=174&rft.issue=2&rft.spage=255&rft.epage=308&rft.pages=255-308&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-008-0131-0&rft_dat=%3Cproquest_cross%3E2544216971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912141233&rft_id=info:pmid/&rfr_iscdi=true