The homotopy category of flat modules, and Grothendieck duality

Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2008-11, Vol.174 (2), p.255-308
1. Verfasser: Neeman, Amnon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description of K ( R -Proj) generalizes to non-affine schemes; this will appear in Murfet’s thesis.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-008-0131-0