The homotopy category of flat modules, and Grothendieck duality
Let R be a ring. We prove that the homotopy category K ( R -Proj) is always -compactly generated, and, depending on the ring R , it may or may not be compactly generated. We use this to give a description of K ( R -Proj) as a quotient of K ( R -Flat). The remarkable fact is that this new description...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2008-11, Vol.174 (2), p.255-308 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be a ring. We prove that the homotopy category
K
(
R
-Proj) is always
-compactly generated, and, depending on the ring
R
, it may or may not be compactly generated. We use this to give a description of
K
(
R
-Proj) as a quotient of
K
(
R
-Flat). The remarkable fact is that this new description of
K
(
R
-Proj) generalizes to non-affine schemes; this will appear in Murfet’s thesis. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-008-0131-0 |