Restrictions to G( p) and G(r) of rational G-modules
We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G(...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2011-11, Vol.147 (6), p.1955-1978 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1978 |
---|---|
container_issue | 6 |
container_start_page | 1955 |
container_title | Compositio mathematica |
container_volume | 147 |
creator | Friedlander, Eric M. |
description | We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G( p)⊂G and the family of restrictions of M to Frobenius kernels G(r) ⊂G. In particular, we confront the conundrum that if M is the Frobenius twist of a rational G-module N,M=N(1), then the restrictions of M and N to G( p) are equal whereas the restriction of M to G(1) is trivial. Our analysis enables us to compare support varieties (and the finer non-maximal support varieties) for G( p) and G(r) of a rational G-module M where the choice of r depends explicitly on M. |
doi_str_mv | 10.1112/S0010437X11005562 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_908552005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X11005562</cupid><sourcerecordid>2527636511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b70fc893c711f7cfe0eccc20d83fae3a96312dd413ca9c4f06868a4cc784f3ca3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4Ab8GTPazO5LGbPUrRKhQEH-BtSWcT2dI2Ndke_PdmacGDeJphvgfffIxdItwgorh9BUBQsvpABNC6FEdshLqCQhtVHrPRABcDfsrOUloCgDDCjJh6camPHfVd2CTeBz675tsJt5s2b3HCg-fRDqBd8VmxDu1u5dI5O_F2ldzFYY7Z-8P92_SxmD_PnqZ384KkrvtiUYEnU0uqEH1F3oEjIgGtkd46aetSomhbhZJsTcpDaUpjFVFllM83OWZXe99tDF-7HLRZhl3MUVJTg9Fa5FczCfckiiGl6Hyzjd3axu8GoRm6af50kzXyoLHrRezaT_fr_L_qB3rSY_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>908552005</pqid></control><display><type>article</type><title>Restrictions to G( p) and G(r) of rational G-modules</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>Friedlander, Eric M.</creator><creatorcontrib>Friedlander, Eric M.</creatorcontrib><description>We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G( p)⊂G and the family of restrictions of M to Frobenius kernels G(r) ⊂G. In particular, we confront the conundrum that if M is the Frobenius twist of a rational G-module N,M=N(1), then the restrictions of M and N to G( p) are equal whereas the restriction of M to G(1) is trivial. Our analysis enables us to compare support varieties (and the finer non-maximal support varieties) for G( p) and G(r) of a rational G-module M where the choice of r depends explicitly on M.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X11005562</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algebraic group theory</subject><ispartof>Compositio mathematica, 2011-11, Vol.147 (6), p.1955-1978</ispartof><rights>Copyright © Foundation Compositio Mathematica 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b70fc893c711f7cfe0eccc20d83fae3a96312dd413ca9c4f06868a4cc784f3ca3</citedby><cites>FETCH-LOGICAL-c359t-b70fc893c711f7cfe0eccc20d83fae3a96312dd413ca9c4f06868a4cc784f3ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X11005562/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Friedlander, Eric M.</creatorcontrib><title>Restrictions to G( p) and G(r) of rational G-modules</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G( p)⊂G and the family of restrictions of M to Frobenius kernels G(r) ⊂G. In particular, we confront the conundrum that if M is the Frobenius twist of a rational G-module N,M=N(1), then the restrictions of M and N to G( p) are equal whereas the restriction of M to G(1) is trivial. Our analysis enables us to compare support varieties (and the finer non-maximal support varieties) for G( p) and G(r) of a rational G-module M where the choice of r depends explicitly on M.</description><subject>Algebraic group theory</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UEtLAzEQDqJgrf4Ab8GTPazO5LGbPUrRKhQEH-BtSWcT2dI2Ndke_PdmacGDeJphvgfffIxdItwgorh9BUBQsvpABNC6FEdshLqCQhtVHrPRABcDfsrOUloCgDDCjJh6camPHfVd2CTeBz675tsJt5s2b3HCg-fRDqBd8VmxDu1u5dI5O_F2ldzFYY7Z-8P92_SxmD_PnqZ384KkrvtiUYEnU0uqEH1F3oEjIgGtkd46aetSomhbhZJsTcpDaUpjFVFllM83OWZXe99tDF-7HLRZhl3MUVJTg9Fa5FczCfckiiGl6Hyzjd3axu8GoRm6af50kzXyoLHrRezaT_fr_L_qB3rSY_c</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Friedlander, Eric M.</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201111</creationdate><title>Restrictions to G( p) and G(r) of rational G-modules</title><author>Friedlander, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b70fc893c711f7cfe0eccc20d83fae3a96312dd413ca9c4f06868a4cc784f3ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebraic group theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedlander, Eric M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedlander, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restrictions to G( p) and G(r) of rational G-modules</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2011-11</date><risdate>2011</risdate><volume>147</volume><issue>6</issue><spage>1955</spage><epage>1978</epage><pages>1955-1978</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G( p)⊂G and the family of restrictions of M to Frobenius kernels G(r) ⊂G. In particular, we confront the conundrum that if M is the Frobenius twist of a rational G-module N,M=N(1), then the restrictions of M and N to G( p) are equal whereas the restriction of M to G(1) is trivial. Our analysis enables us to compare support varieties (and the finer non-maximal support varieties) for G( p) and G(r) of a rational G-module M where the choice of r depends explicitly on M.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X11005562</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2011-11, Vol.147 (6), p.1955-1978 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_journals_908552005 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete |
subjects | Algebraic group theory |
title | Restrictions to G( p) and G(r) of rational G-modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restrictions%20to%20G(%20p)%20and%20G(r)%20of%20rational%20G-modules&rft.jtitle=Compositio%20mathematica&rft.au=Friedlander,%20Eric%20M.&rft.date=2011-11&rft.volume=147&rft.issue=6&rft.spage=1955&rft.epage=1978&rft.pages=1955-1978&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X11005562&rft_dat=%3Cproquest_cross%3E2527636511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=908552005&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X11005562&rfr_iscdi=true |