Restrictions to G( p) and G(r) of rational G-modules
We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G(...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2011-11, Vol.147 (6), p.1955-1978 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G( p)⊂G and the family of restrictions of M to Frobenius kernels G(r) ⊂G. In particular, we confront the conundrum that if M is the Frobenius twist of a rational G-module N,M=N(1), then the restrictions of M and N to G( p) are equal whereas the restriction of M to G(1) is trivial. Our analysis enables us to compare support varieties (and the finer non-maximal support varieties) for G( p) and G(r) of a rational G-module M where the choice of r depends explicitly on M. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X11005562 |