Aberration correction by nonlinear beam mixing: generation of a pseudo point sound source

Nonlinear beam mixing with microbubbles was explored to create a pseudo point source for aberration correction of therapeutic ultrasound. A damping coefficient for a bubble driven by a dual frequency sound field was derived by revisiting Prosperetti's linearized damping model. As a result, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2005-11, Vol.52 (11), p.1970-1980
Hauptverfasser: Jongbum Seo, Choi, J.J., Fowlkes, J.B., O'Donnell, M., Cain, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonlinear beam mixing with microbubbles was explored to create a pseudo point source for aberration correction of therapeutic ultrasound. A damping coefficient for a bubble driven by a dual frequency sound field was derived by revisiting Prosperetti's linearized damping model. As a result, the overall damping term for dual frequency was obtained by linear summation of two damping terms for each frequency. The numerical simulation based on the bubble model suggests that the most efficient size range to generate a 1 MHz frequency from 4 MHz and 5 MHz sound sources is 2.6 to 3.0 /spl mu/m. Furthermore, this size range constitutes the primary distribution of a specific ultrasound contrast agent. When a chamber of 0.1% of the diluted agent is sonified by 4 MHz and 5 MHz sound beams with 80/spl deg/ incident angle between them, an approximately 100 Pa, 1 MHz difference frequency signal can be measured approximately 10 cm away. In addition, the received 1 MHz difference frequency signal shows omni-directional characteristics, even though the overlap zone of the two sound beams is on the order of the difference frequency wavelength. Therefore, the induced sound source can be considered as a pseudo point source and is expected to be useful for aberration correction for therapeutic ultrasound.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2005.1561666