Securing Dynamic Distributed Storage Systems Against Eavesdropping and Adversarial Attacks
We address the problem of securing distributed storage systems against eavesdropping and adversarial attacks. An important aspect of these systems is node failures over time, necessitating, thus, a repair mechanism in order to maintain a desired high system reliability. In such dynamic settings, an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2011-10, Vol.57 (10), p.6734-6753 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the problem of securing distributed storage systems against eavesdropping and adversarial attacks. An important aspect of these systems is node failures over time, necessitating, thus, a repair mechanism in order to maintain a desired high system reliability. In such dynamic settings, an important security problem is to safeguard the system from an intruder who may come at different time instances during the lifetime of the storage system to observe and possibly alter the data stored on some nodes. In this scenario, we give upper bounds on the maximum amount of information that can be stored safely on the system. For an important operating regime of the distributed storage system, which we call the bandwidth-limited regime, we show that our upper bounds are tight and provide explicit code constructions. Moreover, we provide a way to short list the malicious nodes and expurgate the system. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2011.2162191 |