Generalized Burgers Equations Transformable to the Burgers Equation

Using the mappings which involve first‐order derivatives, the Burgers equation with linear damping and variable viscosity  is linearized to several parabolic equations including the heat equation, by applying a method which is a combination of Lie’s classical method and Kawamota’s method. The indepe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2011-10, Vol.127 (3), p.211-220
Hauptverfasser: Vaganan, B. Mayil, Jeyalakshmi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the mappings which involve first‐order derivatives, the Burgers equation with linear damping and variable viscosity  is linearized to several parabolic equations including the heat equation, by applying a method which is a combination of Lie’s classical method and Kawamota’s method. The independent variables of the linearized equations are not t, x but z(x, t), τ(t), where z is the similarity variable. The linearization is possible only when the viscosity Δ(t) depends on the damping parameter α and decays exponentially for large t. And the linearization makes it possible to pose initial and/or boundary value problems for the Burgers equation with linear damping and exponentially decaying viscosity. Bäcklund transformations for the nonplanar Burgers equation with algebraically decaying viscosity are also reported.
ISSN:0022-2526
1467-9590
DOI:10.1111/j.1467-9590.2010.00515.x