Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation

The terahertz spectral range (λ = 30–300 µm) has long been devoid of compact, electrically pumped, room-temperature semiconductor sources 1 , 2 , 3 , 4 . Despite recent progress with terahertz quantum cascade lasers 2 , 3 , 4 , existing devices still require cryogenic cooling. An alternative way to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2007-05, Vol.1 (5), p.288-292
Hauptverfasser: Belkin, Mikhail A, Capasso, Federico, Belyanin, Alexey, Sivco, Deborah L, Cho, Alfred Y, Oakley, Douglas C, Vineis, Christopher J, Turner, George W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The terahertz spectral range (λ = 30–300 µm) has long been devoid of compact, electrically pumped, room-temperature semiconductor sources 1 , 2 , 3 , 4 . Despite recent progress with terahertz quantum cascade lasers 2 , 3 , 4 , existing devices still require cryogenic cooling. An alternative way to produce terahertz radiation is frequency down-conversion in a nonlinear optical crystal using infrared or visible pump lasers 5 , 6 , 7 . This approach offers broad spectral tunability and does work at room temperature; however, it requires powerful laser pumps and a more complicated optical set-up, resulting in bulky and unwieldy sources. Here we demonstrate a monolithically integrated device designed to combine the advantages of electrically pumped semiconductor lasers and nonlinear optical sources. Our device is a dual-wavelength quantum cascade laser 8 with the active region engineered to possess giant second-order nonlinear susceptibility associated with intersubband transitions in coupled quantum wells. The laser operates at λ 1  = 7.6 µm and λ 2  = 8.7 µm, and produces terahertz output at λ = 60 µm through intracavity difference-frequency generation.
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2007.70