Pole discontinuity removal using artificial neural networks for microstrip antenna design

This article presents the use of artificial neural networks for the evaluation of integrals with finite number of pole singularities while formulating the integral equation for the electric surface current density. A feed-forward single-layer back-propagated artificial neural network (ANN) model has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electronics 2011-12, Vol.98 (12), p.1711-1720
Hauptverfasser: Kulshrestha, Sanjeev, Chheda, Deven J., Chakrabarty, S.B., Jyoti, Rajeev, Sharma, S.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents the use of artificial neural networks for the evaluation of integrals with finite number of pole singularities while formulating the integral equation for the electric surface current density. A feed-forward single-layer back-propagated artificial neural network (ANN) model has been trained to approximate the discontinuous integrand function. Generation of a soft continuous function obtained from the ANN model and closed-loop expressions for the evaluation of the integrals are presented. The proposed technique is applied to compute the input impedance of microstrip antenna and results have been compared with IE3D. Integration has been performed using n-point Gaussian quadrature rule for evaluating the reaction matrix.
ISSN:0020-7217
1362-3060
DOI:10.1080/00207217.2011.609970