ERKs induce expression of the transcriptional repressor Blimp-1 and subsequent plasma cell differentiation
In immune cells, the positive role of the extracellular signal-regulated kinase (ERK) signaling pathway in cell cycle progression and survival is well established; however, it is unclear whether ERK signaling plays a role in cell differentiation. Here, we report that ERKs are essential for the diffe...
Gespeichert in:
Veröffentlicht in: | Science signaling 2011-04, Vol.4 (169), p.ra25 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In immune cells, the positive role of the extracellular signal-regulated kinase (ERK) signaling pathway in cell cycle progression and survival is well established; however, it is unclear whether ERK signaling plays a role in cell differentiation. Here, we report that ERKs are essential for the differentiation of B cells into antibody-producing plasma cells and that ERKs induce the expression of Prdm1, which encodes Blimp-1, a transcriptional repressor and "master regulator" of plasma cell differentiation. Transgenic mice with conditional deletion of both ERK1 and ERK2 in germinal center (GC) B cells lacked plasma cells differentiated after GC formation, and memory B cells from these mice failed to differentiate into plasma cells. In addition, ERK1- and ERK2-deficient B cells exhibited impaired Prdm1 expression upon stimulation with antibody against CD40 in the presence of interleukin-4; conversely, enforced expression of Prdm1 in ERK1- and ERK2-deficient B cells restored the generation of plasma cells. Thus, our study suggests that cytokines stimulate ERKs to induce the production of Blimp-1 and that ERKs thereby contribute to the process of cellular differentiation. |
---|---|
ISSN: | 1945-0877 1937-9145 |
DOI: | 10.1126/scisignal.2001592 |