Mean Variance Hedging in a General Jump Model
We consider the mean-variance hedging of a contingent claim H when the discounted price process S is an -valued quasi-left continuous semimartingale with bounded jumps. We relate the variance-optimal martingale measure (VOMM) to a backward semimartingale equation (BSE) and show that the VOMM is equi...
Gespeichert in:
Veröffentlicht in: | Applied mathematical finance. 2010-03, Vol.17 (1), p.29-57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the mean-variance hedging of a contingent claim H when the discounted price process S is an
-valued quasi-left continuous semimartingale with bounded jumps. We relate the variance-optimal martingale measure (VOMM) to a backward semimartingale equation (BSE) and show that the VOMM is equivalent to the original measure P if and only if the BSE has a solution. For a general contingent claim, we derive an explicit solution of the optimal strategy and the optimal cost of the mean-variance hedging by means of another BSE and an appropriate predictable process δ |
---|---|
ISSN: | 1350-486X 1466-4313 |
DOI: | 10.1080/13504860903075605 |