Mean Variance Hedging in a General Jump Model

We consider the mean-variance hedging of a contingent claim H when the discounted price process S is an -valued quasi-left continuous semimartingale with bounded jumps. We relate the variance-optimal martingale measure (VOMM) to a backward semimartingale equation (BSE) and show that the VOMM is equi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical finance. 2010-03, Vol.17 (1), p.29-57
Hauptverfasser: Kohlmann, Michael, Xiong, Dewen, Ye, Zhongxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the mean-variance hedging of a contingent claim H when the discounted price process S is an -valued quasi-left continuous semimartingale with bounded jumps. We relate the variance-optimal martingale measure (VOMM) to a backward semimartingale equation (BSE) and show that the VOMM is equivalent to the original measure P if and only if the BSE has a solution. For a general contingent claim, we derive an explicit solution of the optimal strategy and the optimal cost of the mean-variance hedging by means of another BSE and an appropriate predictable process δ
ISSN:1350-486X
1466-4313
DOI:10.1080/13504860903075605