A Widely Linear Complex Unscented Kalman Filter

Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2011-11, Vol.18 (11), p.623-626
Hauptverfasser: Dini, D. H., Mandic, D. P., Julier, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 11
container_start_page 623
container_title IEEE signal processing letters
container_volume 18
creator Dini, D. H.
Mandic, D. P.
Julier, S. J.
description Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise from the data, state transition model, and state and observation noises. We provide further insight by revisiting the augmented complex unscented Kalman filter (ACUKF) and illuminating its operation in such scenarios. The analysis establishes a relationship between the estimation error and the degree of second order noncircularity (improperness) in the system for the conventional complex unscented Kalman filter (CUKF), and is supported by simulations on both synthetic and real world proper and improper signals.
doi_str_mv 10.1109/LSP.2011.2166259
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_890386730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6003762</ieee_id><sourcerecordid>1010876577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-6fd6aa298eef7f9b151e213721dfdacdd3636bc2846a674b8d26f205fc61e7623</originalsourceid><addsrcrecordid>eNpdkM9LAzEQhYMoWKt3wcviycu2M0k3yR5LsSouKGjxGNLNBLbsj7rZgv3vTWnx4Gnm8L3H42PsFmGCCPm0-HifcECccJSSZ_kZG2GW6ZQLiefxBwVpnoO-ZFchbABAo85GbDpPvipH9T4pqpZsnyy6ZlvTT7JqQ0ntQC55tXVj22RZ1QP11-zC2zrQzemO2Wr5-Ll4Tou3p5fFvEjLGfIhld5Ja3muibzy-RozJI5CcXTe2dI5IYVcl1zPpJVqttaOS88h86VEUpKLMXs49m777ntHYTBNFQfVtW2p2wWDgKCVzJSK6P0_dNPt-jauMzoHoaUSECE4QmXfhdCTN9u-amy_j03mINBEgeYg0JwExsjdMVIR0R8uAcRh4C9hNmnT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890386730</pqid></control><display><type>article</type><title>A Widely Linear Complex Unscented Kalman Filter</title><source>IEEE Electronic Library (IEL)</source><creator>Dini, D. H. ; Mandic, D. P. ; Julier, S. J.</creator><creatorcontrib>Dini, D. H. ; Mandic, D. P. ; Julier, S. J.</creatorcontrib><description>Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise from the data, state transition model, and state and observation noises. We provide further insight by revisiting the augmented complex unscented Kalman filter (ACUKF) and illuminating its operation in such scenarios. The analysis establishes a relationship between the estimation error and the degree of second order noncircularity (improperness) in the system for the conventional complex unscented Kalman filter (CUKF), and is supported by simulations on both synthetic and real world proper and improper signals.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2011.2166259</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analytical models ; Augmented complex UKF ; complex circularity ; Computer simulation ; Covariance matrix ; Data models ; Error analysis ; improperness ; Invariants ; Kalman filters ; Mathematical model ; Matrices ; Noise ; Nonlinearity ; Signal processing ; unscented Kalman filter ; Vectors ; widely linear Kalman filter ; widely linear model</subject><ispartof>IEEE signal processing letters, 2011-11, Vol.18 (11), p.623-626</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-6fd6aa298eef7f9b151e213721dfdacdd3636bc2846a674b8d26f205fc61e7623</citedby><cites>FETCH-LOGICAL-c412t-6fd6aa298eef7f9b151e213721dfdacdd3636bc2846a674b8d26f205fc61e7623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6003762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6003762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dini, D. H.</creatorcontrib><creatorcontrib>Mandic, D. P.</creatorcontrib><creatorcontrib>Julier, S. J.</creatorcontrib><title>A Widely Linear Complex Unscented Kalman Filter</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise from the data, state transition model, and state and observation noises. We provide further insight by revisiting the augmented complex unscented Kalman filter (ACUKF) and illuminating its operation in such scenarios. The analysis establishes a relationship between the estimation error and the degree of second order noncircularity (improperness) in the system for the conventional complex unscented Kalman filter (CUKF), and is supported by simulations on both synthetic and real world proper and improper signals.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Augmented complex UKF</subject><subject>complex circularity</subject><subject>Computer simulation</subject><subject>Covariance matrix</subject><subject>Data models</subject><subject>Error analysis</subject><subject>improperness</subject><subject>Invariants</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Matrices</subject><subject>Noise</subject><subject>Nonlinearity</subject><subject>Signal processing</subject><subject>unscented Kalman filter</subject><subject>Vectors</subject><subject>widely linear Kalman filter</subject><subject>widely linear model</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LAzEQhYMoWKt3wcviycu2M0k3yR5LsSouKGjxGNLNBLbsj7rZgv3vTWnx4Gnm8L3H42PsFmGCCPm0-HifcECccJSSZ_kZG2GW6ZQLiefxBwVpnoO-ZFchbABAo85GbDpPvipH9T4pqpZsnyy6ZlvTT7JqQ0ntQC55tXVj22RZ1QP11-zC2zrQzemO2Wr5-Ll4Tou3p5fFvEjLGfIhld5Ja3muibzy-RozJI5CcXTe2dI5IYVcl1zPpJVqttaOS88h86VEUpKLMXs49m777ntHYTBNFQfVtW2p2wWDgKCVzJSK6P0_dNPt-jauMzoHoaUSECE4QmXfhdCTN9u-amy_j03mINBEgeYg0JwExsjdMVIR0R8uAcRh4C9hNmnT</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Dini, D. H.</creator><creator>Mandic, D. P.</creator><creator>Julier, S. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>A Widely Linear Complex Unscented Kalman Filter</title><author>Dini, D. H. ; Mandic, D. P. ; Julier, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-6fd6aa298eef7f9b151e213721dfdacdd3636bc2846a674b8d26f205fc61e7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Augmented complex UKF</topic><topic>complex circularity</topic><topic>Computer simulation</topic><topic>Covariance matrix</topic><topic>Data models</topic><topic>Error analysis</topic><topic>improperness</topic><topic>Invariants</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Matrices</topic><topic>Noise</topic><topic>Nonlinearity</topic><topic>Signal processing</topic><topic>unscented Kalman filter</topic><topic>Vectors</topic><topic>widely linear Kalman filter</topic><topic>widely linear model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dini, D. H.</creatorcontrib><creatorcontrib>Mandic, D. P.</creatorcontrib><creatorcontrib>Julier, S. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dini, D. H.</au><au>Mandic, D. P.</au><au>Julier, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Widely Linear Complex Unscented Kalman Filter</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>18</volume><issue>11</issue><spage>623</spage><epage>626</epage><pages>623-626</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise from the data, state transition model, and state and observation noises. We provide further insight by revisiting the augmented complex unscented Kalman filter (ACUKF) and illuminating its operation in such scenarios. The analysis establishes a relationship between the estimation error and the degree of second order noncircularity (improperness) in the system for the conventional complex unscented Kalman filter (CUKF), and is supported by simulations on both synthetic and real world proper and improper signals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2011.2166259</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2011-11, Vol.18 (11), p.623-626
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_890386730
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytical models
Augmented complex UKF
complex circularity
Computer simulation
Covariance matrix
Data models
Error analysis
improperness
Invariants
Kalman filters
Mathematical model
Matrices
Noise
Nonlinearity
Signal processing
unscented Kalman filter
Vectors
widely linear Kalman filter
widely linear model
title A Widely Linear Complex Unscented Kalman Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Widely%20Linear%20Complex%20Unscented%20Kalman%20Filter&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Dini,%20D.%20H.&rft.date=2011-11-01&rft.volume=18&rft.issue=11&rft.spage=623&rft.epage=626&rft.pages=623-626&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2011.2166259&rft_dat=%3Cproquest_RIE%3E1010876577%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890386730&rft_id=info:pmid/&rft_ieee_id=6003762&rfr_iscdi=true