A Widely Linear Complex Unscented Kalman Filter

Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2011-11, Vol.18 (11), p.623-626
Hauptverfasser: Dini, D. H., Mandic, D. P., Julier, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise from the data, state transition model, and state and observation noises. We provide further insight by revisiting the augmented complex unscented Kalman filter (ACUKF) and illuminating its operation in such scenarios. The analysis establishes a relationship between the estimation error and the degree of second order noncircularity (improperness) in the system for the conventional complex unscented Kalman filter (CUKF), and is supported by simulations on both synthetic and real world proper and improper signals.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2011.2166259