Determination of the orbits of near-Earth asteroids from observations at the first opposition

Observations at the first opposition are used to determine the orbits of 16 near-Earth asteroids with two or more observed oppositions. The orbits are improved by the differential method. This paper considers two modifications of the improvement technique, which are compared to the classical method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar system research 2011-10, Vol.45 (5), p.386-391
1. Verfasser: Medvedev, Yu. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Observations at the first opposition are used to determine the orbits of 16 near-Earth asteroids with two or more observed oppositions. The orbits are improved by the differential method. This paper considers two modifications of the improvement technique, which are compared to the classical method based on the principle of the least square method (LSM). The first modification uses the principle of least absolute deviations (LAD). In the second modification, the differences O - C (between the observed and calculated positions) are transformed to fit into a new coordinate system whereby the axes go parallel and perpendicular to the asteroid’s apparent path (the modified differential method (MDM)). The orbits determined from one opposition by the classical LSM, LAD, and MDM are compared to a more accurate orbit calculated by the LSM from all the available oppositions. The calculations show that in 13 cases out of 16, the asteroid orbits calculated by LAD are more accurate than those calculated by the classical LSM. The improvement by the modified differential method, which includes the O - C transformation, does not produce any perceptible increase in accuracy when compared to the orbits calculated by the classical method.
ISSN:0038-0946
1608-3423
DOI:10.1134/S0038094611050091