From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions
There is a growing interest in high-order finite and spectral/hp element methods using continuous and discontinuous Galerkin formulations. In this paper we investigate the effect of h- and p-type refinement on the relationship between runtime performance and solution accuracy. The broad spectrum of...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling of natural phenomena 2011-01, Vol.6 (3), p.84-96 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a growing interest in high-order finite and spectral/hp element methods using continuous and discontinuous Galerkin formulations. In this paper we investigate the effect of h- and p-type refinement on the relationship between runtime performance and solution accuracy. The broad spectrum of possible domain discretisations makes establishing a performance-optimal selection non-trivial. Through comparing the runtime of different implementations for evaluating operators over the space of discretisations with a desired solution tolerance, we demonstrate how the optimal discretisation and operator implementation may be selected for a specified problem. Furthermore, this demonstrates the need for codes to support both low- and high-order discretisations. |
---|---|
ISSN: | 0973-5348 1760-6101 |
DOI: | 10.1051/mmnp/20116304 |