A note on a problem of Abramovich, Aliprantis and Burkinshaw

Let B and T be two positive operators on a Banach lattice such that B is compact-friendly and T is locally quasi-nilpotent. Introducing the concept of positive quasi-similarity, we prove that T has a non-trivial closed invariant subspace provided B is positively quasi-similar to T . This gives an af...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2011-09, Vol.15 (3), p.473-480, Article 473
Hauptverfasser: CAGLAR, Mert, MISIRLIOGLU, Tunç
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let B and T be two positive operators on a Banach lattice such that B is compact-friendly and T is locally quasi-nilpotent. Introducing the concept of positive quasi-similarity, we prove that T has a non-trivial closed invariant subspace provided B is positively quasi-similar to T . This gives an affirmative answer to a problem of Abramovich, Aliprantis and Burkinshaw with the commutativity condition replaced by the positive quasi-similarity of the corresponding operators. The notion of strong compact-friendliness is also introduced and relevant facts about it are discussed.
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-010-0096-2