Docosahexaenoic acid suppresses apolipoprotein A-I gene expression through hepatocyte nuclear factor-3[Beta]
Dietary fish-oil supplementation has been shown in human kinetic studies to lower the production rate of apolipoprotein (apo) A-I, the major protein component of HDL. The underlying mechanism responsible for this effect is not fully understood. We investigated the effect and the mechanism of action...
Gespeichert in:
Veröffentlicht in: | The American journal of clinical nutrition 2011-08, Vol.94 (2), p.594 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dietary fish-oil supplementation has been shown in human kinetic studies to lower the production rate of apolipoprotein (apo) A-I, the major protein component of HDL. The underlying mechanism responsible for this effect is not fully understood. We investigated the effect and the mechanism of action of the very-long-chain n-3 (omega-3) polyunsaturated fatty acid docosahexaenoic acid (DHA), relative to the saturated fatty acid palmitic acid (PA), on the hepatic expression of apo A-I in HepG2 cells. HepG2 cells were treated with different doses of DHA and PA (0-200 μmol/L). mRNA expression levels of apo A-I were assessed by real-time polymerase chain reaction, and apo A-I protein concentrations were measured by immunoassay. DHA dose-dependently suppressed apo A-I mRNA levels and also lowered apo A-I protein concentrations in the media, with maximum effects at 200 μmol/L. This concentration of fatty acids was used in all subsequent experiments. To elucidate the mechanism mediating the reduction in apo A-I expression by DHA, transfection experiments were conducted with plasmid constructs containing serial deletions of the apo A-I promoter. The DHA-responsive region was mapped to the -185 to -148 nucleotide region of the apo A-I promoter, which binds the hepatocyte nuclear factor (HNF)-3β. Nuclear extracts from cells treated with DHA or PA had a similar nuclear abundance of HNF-3β. However, electrophoresis mobility shift assays showed less binding of HNF-3β to the -180 to -140 sequence of the apo A-I promoter than did PA-treated cells. As shown by chromatin immunoprecipitation analysis, less HNF-3β was recruited to the apo A-I promoter in DHA-treated cells than in PA-treated cells, which supports the concept of an interference of DHA with the binding of HNF-3β to the apo A-I promoter. These findings suggest that, in human hepatoma HepG2 cells, DHA inhibits the binding of HNF-3β to the apo A-I promoter, resulting in the repression of apo A-I promoter transactivity and thus a reduction in apo A-I expression. |
---|---|
ISSN: | 0002-9165 1938-3207 |