Coarse quantization for data compression in coherent location systems

When emitter location systems measure time-difference-of-arrival (TDOA) and differential Doppler (DD) by coherently cross-correlating the signal pairs, data compression techniques are needed to facilitate data transfer of one of the signals to the receiving site of the other signal. Two block-adapti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2000-10, Vol.36 (4), p.1269-1278
1. Verfasser: Fowler, M.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When emitter location systems measure time-difference-of-arrival (TDOA) and differential Doppler (DD) by coherently cross-correlating the signal pairs, data compression techniques are needed to facilitate data transfer of one of the signals to the receiving site of the other signal. Two block-adaptive quantization schemes are analyzed here to determine their impact on the signal-to-noise ratio (SNR) of the quantized signal as well as on the post-correlation SNR. Comparisons are made between two approaches: quantization of the real/imaginary (R/I) components or the magnitude/phase (M/P) components. For the M/P approach, a rule is derived for optimally allocating the bits between the magnitude and phase. The M/P approach provides better post-quantization/precorrelation SNR for most signals; however, when the SNR of the signal not being quantized is small, the post-correlation SNR can be largely unaffected by the quantization. In that case, there is little difference between R/I and M/P, even under the most favorable scenario for M/P.
ISSN:0018-9251
1557-9603
DOI:10.1109/7.892674