A generalized fuzzy mathematical morphology and its application in robust 2-D and 3-D object representation

In this paper, the generalized fuzzy mathematical morphology (GFMM) is proposed, based on a novel definition of the fuzzy inclusion indicator (FII). FII is a fuzzy set used as a measure of the inclusion of a fuzzy set into another, that is proposed to be a fuzzy set. It is proven that the FII obeys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2000, Vol.9 (10), p.1798-1810
Hauptverfasser: Chatzis, V., Pitas, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the generalized fuzzy mathematical morphology (GFMM) is proposed, based on a novel definition of the fuzzy inclusion indicator (FII). FII is a fuzzy set used as a measure of the inclusion of a fuzzy set into another, that is proposed to be a fuzzy set. It is proven that the FII obeys a set of axioms, which are proposed to be extensions of the known axioms that any inclusion indicator should obey, and which correspond to the desirable properties of any mathematical morphology operation. The GFMM provides a very powerful and flexible tool for morphological operations. The binary and grayscale mathematical morphologies can be considered as special cases of the proposed GFMM. An application for robust skeletonization and shape decomposition of two-dimensional (2-D) and three-dimensional (3-D) objects is presented. Simulation examples show that the object reconstruction from their skeletal subsets that can be achieved by using the GFMM is better than by using the binary mathematical morphology in most cases. Furthermore, the use of the GFMM for skeletonization and shape decomposition preserves the shape and the location of the skeletal subsets and spines.
ISSN:1057-7149
1941-0042
DOI:10.1109/83.869190