Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case

This paper deals with maximum likelihood (ML) parameter estimation of continuous-time nonlinear partially observed stochastic systems, via the expectation maximization (EM) algorithm. It is shown that the EM algorithm can be executed efficiently, provided the unnormalized conditional density of nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2000-05, Vol.45 (5), p.928-934
Hauptverfasser: Charalambous, C.D., Logothetis, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with maximum likelihood (ML) parameter estimation of continuous-time nonlinear partially observed stochastic systems, via the expectation maximization (EM) algorithm. It is shown that the EM algorithm can be executed efficiently, provided the unnormalized conditional density of nonlinear filtering is either explicitly solvable or numerically implemented. The methodology exploits the relationships between incomplete and complete data, log-likelihood and its gradient.
ISSN:0018-9286
1558-2523
DOI:10.1109/9.855553