The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies
This paper presents empirical and theoretical analyses of spectral hemispherical reflectances and transmittances of individual leaves and the entire canopy sampled at two sites representative of equatorial rainforests and temperate coniferous forests. The empirical analysis indicates that some simpl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2001-02, Vol.39 (2), p.241-253 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 2 |
container_start_page | 241 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 39 |
creator | Panferov, O. Knyazikhin, Y. Myneni, R.B. Szarzynski, J. Engwald, S. Schnitzler, K.G. Gravenhorst, G. |
description | This paper presents empirical and theoretical analyses of spectral hemispherical reflectances and transmittances of individual leaves and the entire canopy sampled at two sites representative of equatorial rainforests and temperate coniferous forests. The empirical analysis indicates that some simple algebraic combinations of leaf and canopy spectral transmittances and reflectances eliminate their dependencies on wavelength through the specification of two canopy-specific wavelength-independent variables. These variables and leaf optical properties govern the energy conservation in vegetation canopies at any given wavelength of the solar spectrum. The presented theoretical development indicates these canopy-specific wavelength-independent variables characterize the capacity of the canopy to intercept and transmit solar radiation under two extreme situations, namely, when individual leaves 1) are completely absorptive and 2) totally reflect and/or transmit the incident radiation. The interactions of photons with the canopy at red and near-infrared (IR) spectral bands approximate these extreme situations well. One can treat the vegetation canopy as a dynamical system and the canopy spectral interception and transmission as dynamical variables. The system has two independent states: canopies with totally absorbing and totally scattering leaves. Intermediate states are a superposition of these pure states. Such an interpretation provides powerful means to accurately specify changes in canopy structure both from ground-based measurements and remotely sensed data. This concept underlies the operational algorithm of global leaf area index (LAI), and the fraction of photosynthetically active radiation absorbed by vegetation developed for the moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments of the Earth Observing System (EOS) Terra mission. |
doi_str_mv | 10.1109/36.905232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_884790426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>905232</ieee_id><sourcerecordid>18348027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c892975e39c29bc2e01d0c156110a7aa518868bad37fc2af98053a823a0866983</originalsourceid><addsrcrecordid>eNqFkj1vFDEQhi1EJI6EgpbKAglEscHfHpco4iNSpDShXs35ZmGjzXqxdyOl4q_jYw-QKLjKGr_PvJ4ZD2PPpTiXUoR32p0HYZVWj9hGWguNcMY8Zhshg2sUBPWEPS3lVghprPQb9uPmG_GcBuKp4xHHND3wMuclzksm3o98rnqZKM4ZB36Puce5T-OerjdjuetL2cc47jhuS8rTb7mkATPPuDtkVK97-krzGv16qqdyxk46HAo9O5yn7MvHDzcXn5ur60-XF--vmmisn5tYKw_ekg5RhW1UJORORGldbRo9opUADra4076LCrsAwmoEpVGAcwH0KXuz-k45fV-ozG2tPNIw4EhpKS0ASGk06Eq-_i-pgvBSWXEcBGetA3kcdCEY8OEoKEEbEMpX8OU_4G1a8lgHWBsxPgijXIXerlDMqZRMXTvl_g7zQytFu1-WVrt2XZbKvjoYYok4dPVrY1_-JNThW7CVerFSPRH9FVeLn824xeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884790426</pqid></control><display><type>article</type><title>The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies</title><source>IEEE Electronic Library (IEL)</source><creator>Panferov, O. ; Knyazikhin, Y. ; Myneni, R.B. ; Szarzynski, J. ; Engwald, S. ; Schnitzler, K.G. ; Gravenhorst, G.</creator><creatorcontrib>Panferov, O. ; Knyazikhin, Y. ; Myneni, R.B. ; Szarzynski, J. ; Engwald, S. ; Schnitzler, K.G. ; Gravenhorst, G.</creatorcontrib><description>This paper presents empirical and theoretical analyses of spectral hemispherical reflectances and transmittances of individual leaves and the entire canopy sampled at two sites representative of equatorial rainforests and temperate coniferous forests. The empirical analysis indicates that some simple algebraic combinations of leaf and canopy spectral transmittances and reflectances eliminate their dependencies on wavelength through the specification of two canopy-specific wavelength-independent variables. These variables and leaf optical properties govern the energy conservation in vegetation canopies at any given wavelength of the solar spectrum. The presented theoretical development indicates these canopy-specific wavelength-independent variables characterize the capacity of the canopy to intercept and transmit solar radiation under two extreme situations, namely, when individual leaves 1) are completely absorptive and 2) totally reflect and/or transmit the incident radiation. The interactions of photons with the canopy at red and near-infrared (IR) spectral bands approximate these extreme situations well. One can treat the vegetation canopy as a dynamical system and the canopy spectral interception and transmission as dynamical variables. The system has two independent states: canopies with totally absorbing and totally scattering leaves. Intermediate states are a superposition of these pure states. Such an interpretation provides powerful means to accurately specify changes in canopy structure both from ground-based measurements and remotely sensed data. This concept underlies the operational algorithm of global leaf area index (LAI), and the fraction of photosynthetically active radiation absorbed by vegetation developed for the moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments of the Earth Observing System (EOS) Terra mission.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.905232</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Dynamical systems ; Earth Observing System ; Earth sciences ; Earth, ocean, space ; Energy conservation ; Exact sciences and technology ; Internal geophysics ; MODIS ; Optical scattering ; Optical sensors ; Particle scattering ; Soils ; Solar radiation ; Spectral analysis ; Studies ; Surficial geology ; Ultraviolet sources ; Vegetation mapping</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2001-02, Vol.39 (2), p.241-253</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c892975e39c29bc2e01d0c156110a7aa518868bad37fc2af98053a823a0866983</citedby><cites>FETCH-LOGICAL-c457t-c892975e39c29bc2e01d0c156110a7aa518868bad37fc2af98053a823a0866983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/905232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/905232$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=929585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Panferov, O.</creatorcontrib><creatorcontrib>Knyazikhin, Y.</creatorcontrib><creatorcontrib>Myneni, R.B.</creatorcontrib><creatorcontrib>Szarzynski, J.</creatorcontrib><creatorcontrib>Engwald, S.</creatorcontrib><creatorcontrib>Schnitzler, K.G.</creatorcontrib><creatorcontrib>Gravenhorst, G.</creatorcontrib><title>The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents empirical and theoretical analyses of spectral hemispherical reflectances and transmittances of individual leaves and the entire canopy sampled at two sites representative of equatorial rainforests and temperate coniferous forests. The empirical analysis indicates that some simple algebraic combinations of leaf and canopy spectral transmittances and reflectances eliminate their dependencies on wavelength through the specification of two canopy-specific wavelength-independent variables. These variables and leaf optical properties govern the energy conservation in vegetation canopies at any given wavelength of the solar spectrum. The presented theoretical development indicates these canopy-specific wavelength-independent variables characterize the capacity of the canopy to intercept and transmit solar radiation under two extreme situations, namely, when individual leaves 1) are completely absorptive and 2) totally reflect and/or transmit the incident radiation. The interactions of photons with the canopy at red and near-infrared (IR) spectral bands approximate these extreme situations well. One can treat the vegetation canopy as a dynamical system and the canopy spectral interception and transmission as dynamical variables. The system has two independent states: canopies with totally absorbing and totally scattering leaves. Intermediate states are a superposition of these pure states. Such an interpretation provides powerful means to accurately specify changes in canopy structure both from ground-based measurements and remotely sensed data. This concept underlies the operational algorithm of global leaf area index (LAI), and the fraction of photosynthetically active radiation absorbed by vegetation developed for the moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments of the Earth Observing System (EOS) Terra mission.</description><subject>Applied geophysics</subject><subject>Dynamical systems</subject><subject>Earth Observing System</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy conservation</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>MODIS</subject><subject>Optical scattering</subject><subject>Optical sensors</subject><subject>Particle scattering</subject><subject>Soils</subject><subject>Solar radiation</subject><subject>Spectral analysis</subject><subject>Studies</subject><subject>Surficial geology</subject><subject>Ultraviolet sources</subject><subject>Vegetation mapping</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkj1vFDEQhi1EJI6EgpbKAglEscHfHpco4iNSpDShXs35ZmGjzXqxdyOl4q_jYw-QKLjKGr_PvJ4ZD2PPpTiXUoR32p0HYZVWj9hGWguNcMY8Zhshg2sUBPWEPS3lVghprPQb9uPmG_GcBuKp4xHHND3wMuclzksm3o98rnqZKM4ZB36Puce5T-OerjdjuetL2cc47jhuS8rTb7mkATPPuDtkVK97-krzGv16qqdyxk46HAo9O5yn7MvHDzcXn5ur60-XF--vmmisn5tYKw_ekg5RhW1UJORORGldbRo9opUADra4076LCrsAwmoEpVGAcwH0KXuz-k45fV-ozG2tPNIw4EhpKS0ASGk06Eq-_i-pgvBSWXEcBGetA3kcdCEY8OEoKEEbEMpX8OU_4G1a8lgHWBsxPgijXIXerlDMqZRMXTvl_g7zQytFu1-WVrt2XZbKvjoYYok4dPVrY1_-JNThW7CVerFSPRH9FVeLn824xeA</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Panferov, O.</creator><creator>Knyazikhin, Y.</creator><creator>Myneni, R.B.</creator><creator>Szarzynski, J.</creator><creator>Engwald, S.</creator><creator>Schnitzler, K.G.</creator><creator>Gravenhorst, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20010201</creationdate><title>The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies</title><author>Panferov, O. ; Knyazikhin, Y. ; Myneni, R.B. ; Szarzynski, J. ; Engwald, S. ; Schnitzler, K.G. ; Gravenhorst, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c892975e39c29bc2e01d0c156110a7aa518868bad37fc2af98053a823a0866983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied geophysics</topic><topic>Dynamical systems</topic><topic>Earth Observing System</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy conservation</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>MODIS</topic><topic>Optical scattering</topic><topic>Optical sensors</topic><topic>Particle scattering</topic><topic>Soils</topic><topic>Solar radiation</topic><topic>Spectral analysis</topic><topic>Studies</topic><topic>Surficial geology</topic><topic>Ultraviolet sources</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panferov, O.</creatorcontrib><creatorcontrib>Knyazikhin, Y.</creatorcontrib><creatorcontrib>Myneni, R.B.</creatorcontrib><creatorcontrib>Szarzynski, J.</creatorcontrib><creatorcontrib>Engwald, S.</creatorcontrib><creatorcontrib>Schnitzler, K.G.</creatorcontrib><creatorcontrib>Gravenhorst, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panferov, O.</au><au>Knyazikhin, Y.</au><au>Myneni, R.B.</au><au>Szarzynski, J.</au><au>Engwald, S.</au><au>Schnitzler, K.G.</au><au>Gravenhorst, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2001-02-01</date><risdate>2001</risdate><volume>39</volume><issue>2</issue><spage>241</spage><epage>253</epage><pages>241-253</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents empirical and theoretical analyses of spectral hemispherical reflectances and transmittances of individual leaves and the entire canopy sampled at two sites representative of equatorial rainforests and temperate coniferous forests. The empirical analysis indicates that some simple algebraic combinations of leaf and canopy spectral transmittances and reflectances eliminate their dependencies on wavelength through the specification of two canopy-specific wavelength-independent variables. These variables and leaf optical properties govern the energy conservation in vegetation canopies at any given wavelength of the solar spectrum. The presented theoretical development indicates these canopy-specific wavelength-independent variables characterize the capacity of the canopy to intercept and transmit solar radiation under two extreme situations, namely, when individual leaves 1) are completely absorptive and 2) totally reflect and/or transmit the incident radiation. The interactions of photons with the canopy at red and near-infrared (IR) spectral bands approximate these extreme situations well. One can treat the vegetation canopy as a dynamical system and the canopy spectral interception and transmission as dynamical variables. The system has two independent states: canopies with totally absorbing and totally scattering leaves. Intermediate states are a superposition of these pure states. Such an interpretation provides powerful means to accurately specify changes in canopy structure both from ground-based measurements and remotely sensed data. This concept underlies the operational algorithm of global leaf area index (LAI), and the fraction of photosynthetically active radiation absorbed by vegetation developed for the moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments of the Earth Observing System (EOS) Terra mission.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.905232</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2001-02, Vol.39 (2), p.241-253 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_884790426 |
source | IEEE Electronic Library (IEL) |
subjects | Applied geophysics Dynamical systems Earth Observing System Earth sciences Earth, ocean, space Energy conservation Exact sciences and technology Internal geophysics MODIS Optical scattering Optical sensors Particle scattering Soils Solar radiation Spectral analysis Studies Surficial geology Ultraviolet sources Vegetation mapping |
title | The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20canopy%20structure%20in%20the%20spectral%20variation%20of%20transmission%20and%20absorption%20of%20solar%20radiation%20in%20vegetation%20canopies&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Panferov,%20O.&rft.date=2001-02-01&rft.volume=39&rft.issue=2&rft.spage=241&rft.epage=253&rft.pages=241-253&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.905232&rft_dat=%3Cproquest_RIE%3E18348027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884790426&rft_id=info:pmid/&rft_ieee_id=905232&rfr_iscdi=true |