The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies

This paper presents empirical and theoretical analyses of spectral hemispherical reflectances and transmittances of individual leaves and the entire canopy sampled at two sites representative of equatorial rainforests and temperate coniferous forests. The empirical analysis indicates that some simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2001-02, Vol.39 (2), p.241-253
Hauptverfasser: Panferov, O., Knyazikhin, Y., Myneni, R.B., Szarzynski, J., Engwald, S., Schnitzler, K.G., Gravenhorst, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents empirical and theoretical analyses of spectral hemispherical reflectances and transmittances of individual leaves and the entire canopy sampled at two sites representative of equatorial rainforests and temperate coniferous forests. The empirical analysis indicates that some simple algebraic combinations of leaf and canopy spectral transmittances and reflectances eliminate their dependencies on wavelength through the specification of two canopy-specific wavelength-independent variables. These variables and leaf optical properties govern the energy conservation in vegetation canopies at any given wavelength of the solar spectrum. The presented theoretical development indicates these canopy-specific wavelength-independent variables characterize the capacity of the canopy to intercept and transmit solar radiation under two extreme situations, namely, when individual leaves 1) are completely absorptive and 2) totally reflect and/or transmit the incident radiation. The interactions of photons with the canopy at red and near-infrared (IR) spectral bands approximate these extreme situations well. One can treat the vegetation canopy as a dynamical system and the canopy spectral interception and transmission as dynamical variables. The system has two independent states: canopies with totally absorbing and totally scattering leaves. Intermediate states are a superposition of these pure states. Such an interpretation provides powerful means to accurately specify changes in canopy structure both from ground-based measurements and remotely sensed data. This concept underlies the operational algorithm of global leaf area index (LAI), and the fraction of photosynthetically active radiation absorbed by vegetation developed for the moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments of the Earth Observing System (EOS) Terra mission.
ISSN:0196-2892
1558-0644
DOI:10.1109/36.905232