A recursive least squares implementation for LCMP beamforming under quadratic constraint
Quadratic constraints on the weight vector of an adaptive linearly constrained minimum power (LCMP) beamformer can improve robustness to pointing errors and to random perturbations in sensor parameters. We propose a technique for implementing a quadratic inequality constraint with recursive least sq...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2001-06, Vol.49 (6), p.1138-1145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quadratic constraints on the weight vector of an adaptive linearly constrained minimum power (LCMP) beamformer can improve robustness to pointing errors and to random perturbations in sensor parameters. We propose a technique for implementing a quadratic inequality constraint with recursive least squares (RLS) updating. A variable diagonal loading term is added at each step, where the amount of loading has a closed-form solution. Simulations under different scenarios demonstrate that this algorithm has better interference suppression than both the RLS beamformer with no quadratic constraint and the RLS beamformer using the scaled projection technique, as well as faster convergence than LMS beamformers. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.923296 |