A recursive least squares implementation for LCMP beamforming under quadratic constraint

Quadratic constraints on the weight vector of an adaptive linearly constrained minimum power (LCMP) beamformer can improve robustness to pointing errors and to random perturbations in sensor parameters. We propose a technique for implementing a quadratic inequality constraint with recursive least sq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2001-06, Vol.49 (6), p.1138-1145
Hauptverfasser: Zhi Tian, Bell, K.L., Van Trees, H.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quadratic constraints on the weight vector of an adaptive linearly constrained minimum power (LCMP) beamformer can improve robustness to pointing errors and to random perturbations in sensor parameters. We propose a technique for implementing a quadratic inequality constraint with recursive least squares (RLS) updating. A variable diagonal loading term is added at each step, where the amount of loading has a closed-form solution. Simulations under different scenarios demonstrate that this algorithm has better interference suppression than both the RLS beamformer with no quadratic constraint and the RLS beamformer using the scaled projection technique, as well as faster convergence than LMS beamformers.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.923296