A life consumption monitoring methodology for electronic systems

Failures in electronic products are often attributable to various combinations, intensities, and durations of environmental loads, such as temperature, humidity, vibration, and radiation. For many of the failure mechanisms in electronic products, there are models that relate environmental loads to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components and packaging technologies 2003-09, Vol.26 (3), p.625-634
Hauptverfasser: Ramakrishnan, A., Pecht, M.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Failures in electronic products are often attributable to various combinations, intensities, and durations of environmental loads, such as temperature, humidity, vibration, and radiation. For many of the failure mechanisms in electronic products, there are models that relate environmental loads to the time to failure of the product. Thus, by monitoring the environment of a product over its life cycle, it may be possible to determine the amount of damage induced by various loads and predict when the product might fail. This paper describes the development of a physics-of-failure-based methodology for determining the damage or life consumption in a product. As a demonstration of the methodology, a data recorder has been used to monitor the temperature and vibration loads on a printed circuit board placed under the hood of a car. The data collected by the recorder has been used to determine the life consumption in the solder joints of the printed circuit board due to temperature and vibration loading. The calculated remaining life has then been compared with temperature cycling test results on the board to assess the validity of the approach.
ISSN:1521-3331
1557-9972
DOI:10.1109/TCAPT.2003.817654