Multichannel blind image deconvolution using the Bussgang algorithm: spatial and multiresolution approaches

This work extends the Bussgang blind equalization algorithm to the multichannel case with application to image deconvolution problems. We address the restoration of images with poor spatial correlation as well as strongly correlated (natural) images. The spatial nonlinearity employed in the final es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2003-11, Vol.12 (11), p.1324-1337
Hauptverfasser: Panci, G., Campisi, P., Colonnese, S., Scarano, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work extends the Bussgang blind equalization algorithm to the multichannel case with application to image deconvolution problems. We address the restoration of images with poor spatial correlation as well as strongly correlated (natural) images. The spatial nonlinearity employed in the final estimation step of the Bussgang algorithm is developed according to the minimum mean square error criterion in the case of spatially uncorrelated images. For spatially correlated images, the nonlinearity design is rather conducted using a particular wavelet decomposition that, detecting lines, edges, and higher order structures, carries out a task analogous to those of the (preattentive) stage of the human visual system. Experimental results pertaining to restoration of motion blurred text images, out-of-focus spiky images, and blurred natural images are reported.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2003.818022