Needle biomass turnover rates of Scots pine (Pinus sylvestris L.) derived from the needle-shed dynamics
To understand carbon cycle and flows of forests, accurate information on tree-component-specific litter production of trees is needed. In the ecosystem models, the litterfall of living trees is usually predicted by the biomass component by average amounts corresponding to site conditions or by multi...
Gespeichert in:
Veröffentlicht in: | Trees (Berlin, West) West), 2005-05, Vol.19 (3), p.273-279 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To understand carbon cycle and flows of forests, accurate information on tree-component-specific litter production of trees is needed. In the ecosystem models, the litterfall of living trees is usually predicted by the biomass component by average amounts corresponding to site conditions or by multiplying the biomass of the growing stock by the component-specific biomass turnover rate. In this study, the rates of needle biomass turnover of Scots pine (Pinus sylvestris L.) were derived from the needle-shed dynamics. When the rates for needle litter production were modelled, the weighting and yellowing effects were taken into account. The annual biomass turnover rates of needles for southern and northern Finland are 0.21 and 0.10, respectively. Species-specific estimation of litter production is essential for understanding the carbon cycle and flows of forests. Biomass turnover rates can provide useful litter production estimates for large areas with average biomass values as a source of data.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0931-1890 1432-2285 |
DOI: | 10.1007/s00468-004-0381-4 |