Nonparametric weighted feature extraction for classification
In this paper, a new nonparametric feature extraction method is proposed for high-dimensional multiclass pattern recognition problems. It is based on a nonparametric extension of scatter matrices. There are at least two advantages to using the proposed nonparametric scatter matrices. First, they are...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2004-05, Vol.42 (5), p.1096-1105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new nonparametric feature extraction method is proposed for high-dimensional multiclass pattern recognition problems. It is based on a nonparametric extension of scatter matrices. There are at least two advantages to using the proposed nonparametric scatter matrices. First, they are generally of full rank. This provides the ability to specify the number of extracted features desired and to reduce the effect of the singularity problem. This is in contrast to parametric discriminant analysis, which usually only can extract L-1 (number of classes minus one) features. In a real situation, this may not be enough. Second, the nonparametric nature of scatter matrices reduces the effects of outliers and works well even for nonnormal datasets. The new method provides greater weight to samples near the expected decision boundary. This tends to provide for increased classification accuracy. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2004.825578 |