Linearized vegetation indices based on a formal statistical framework

Vegetation indices have been used extensively to estimate the vegetation density from satellite and airborne images for many years. In this paper, we focus on one of the most popular of such indices, the normalized difference vegetation index (NDVI), and we introduce a statistical framework to analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2004-07, Vol.42 (7), p.1575-1585
Hauptverfasser: Unsalan, C., Boyer, K.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vegetation indices have been used extensively to estimate the vegetation density from satellite and airborne images for many years. In this paper, we focus on one of the most popular of such indices, the normalized difference vegetation index (NDVI), and we introduce a statistical framework to analyze it. As the degree of vegetation increases, the corresponding NDVI values begin to saturate and cannot represent highly vegetated regions reliably. By adopting the statistical viewpoint, we show how to obtain a linearized and more reliable measure. While the NDVI uses only red and near-infrared bands, we use the statistical framework to introduce new indices using the blue and green bands as well. We compare these indices with that obtained by linearizing the NDVI with extensive experimental results on real IKONOS multispectral images.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2004.826787