Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants
GABA (4-aminobutyric acid) is a ubiquitousnon-protein amino acid that accumulates rapidly inplants in response to stress. GABA was firstidentified in plants (potato tubers) and animals(brain tissue) 50 years ago. Although GABA is nowrecognized as the most important inhibitoryneurotransmitter in the...
Gespeichert in:
Veröffentlicht in: | Plant growth regulation 2000-09, Vol.32 (1), p.65-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | GABA (4-aminobutyric acid) is a ubiquitousnon-protein amino acid that accumulates rapidly inplants in response to stress. GABA was firstidentified in plants (potato tubers) and animals(brain tissue) 50 years ago. Although GABA is nowrecognized as the most important inhibitoryneurotransmitter in the mammalian central nervoussystem (CNS), the role of GABA in plants remainsunclear. Studies were performed using Lemna toinvestigate the possibility that GABA elicits aresponse in plants that may be related to that of asignaling molecule as described for GABA effects onthe CNS. Lemna growth was increased 2 to 3-foldby 5 mM GABA, but growth was strongly inhibited by 0.5mM of the isomers 3-aminobutyric acid and2-aminobutyric acid. Growth promotion by GABA wasrapidly terminated by addition of 2-aminobutyric acidto the culture medium, but inhibitory effects of2-aminobutyric acid were not reversed by GABAregardless of amounts added. Promotion of Lemnagrowth by GABA was associated with an increase inmineral content of treated plants in a dose dependentmanner. Results support the hypothesis that GABAactivity in plants involves an effect on ion transportand an interaction with a receptor. Evidence for GABAreceptors in Lemna was obtained from experimentswith pharmacological agents that have been used toidentify GABA receptors in animals. GABA mediatedpromotion of Lemna growth was inhibited bybicuculline and picrotoxin, which are respectivelycompetitive and non-competitive antagonists of GABAreceptors in the CNS. Growth inhibition bybicuculline was not relieved by increasing the amountsof GABA in the medium, indicating that the alkaloid isnot acting, as in the CNS, by competitive antagonismof GABA at GABA receptor sites. Baclofen, a GABAagonist that promotes GABA activity in animalssignificantly increased GABA mediated promotion ofLemna growth. These findings and the knownaction of GABA in regulating ion channels in animalssuggests a way that GABA could amplify the stressresponse in plants.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0167-6903 1573-5087 |
DOI: | 10.1023/A:1006305120202 |