Oxidative stress, antioxidant activity and Fe(III)-chelate reductase activity of five Prunus rootstocks explants in response to Fe deficiency
The aim of this work was to investigate whether Fe reduction and antioxidant mechanisms were expressed differently in five Prunus rootstocks ('Peach seedling,' 'Barrier,' 'Cadaman,' 'Saint Julien 655/2' and 'GF-677'). These rootstocks differ in their...
Gespeichert in:
Veröffentlicht in: | Plant growth regulation 2005-05, Vol.46 (1), p.69-78 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this work was to investigate whether Fe reduction and antioxidant mechanisms were expressed differently in five Prunus rootstocks ('Peach seedling,' 'Barrier,' 'Cadaman,' 'Saint Julien 655/2' and 'GF-677'). These rootstocks differ in their tolerance to Fe deficiency when grown in the absence of Fe (-Fe) or in presence of bicarbonate (supplied as 5 or 10 mM NaHCO3). Fe deficiency conditions, especially bicarbonate, were shown to decrease Fe and total chlorophyll (CHL) concentration. In the (-Fe)-treated roots of all rootstocks and in the 5 mM NaHCO3-treated ones of the tolerant 'GF-677' the Fe(III)-chelate reductase (FCR) activity was stimulated. On the contrary, apart from the 'GF-677,' FCR activity was greatly inhibited by the 10 mM NaHCO3. From the results obtained with decapitated rootstocks, it is not entirely clear whether or not the presence of shoot apex was a prerequisite to induce FCR function in all rootstocks tested. In the leaves of rootstocks exposed to the (-Fe) treatment, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were enhanced whereas the levels of the non-enzymatic antioxidants (FRAP values) were increased in the Fe-deprived leaves, irrespective of the rootstock. Except for 'Peach seedling,' foliar SOD activity was stimulated by the presence of NaHCO3. Furthermore, POD activity was increased in the 'Saint Julien 655/2' and 'GF-677,' but was depressed in the 'Barrier' rootstocks exposed to 10 mM NaHCO3. As a result of 10 mM NaHCO3, the expression of a Cu/Zn-SOD and a POD isoform was diminished in the leaves of 'Peach seedling' and 'Barrier,' respectively. By contrast, an additional isoform of both POD and Mn-SOD were expressed in the leaves of 'GF-677' exposed to 10 mM NaHCO3 suggesting that the tolerance of rootstocks to Fe deficiency is associated with induction of an antioxidant defense mechanism. Although CAT activity was increased in the 5 mM NaHCO3-treated leaves of 'GF-677,' specifically the 10 mM NaHCO3 treatment resulted in a decrease of CAT activity and an accumulation of H2O2, indicating that bicarbonate-induced Fe deficiency may cause more severe oxidative stress in the rootstocks, than the absence of Fe. A general link between Fe deficiency-induced oxidative stress and Fe reduction-sensing mechanism is also discussed. |
---|---|
ISSN: | 0167-6903 1573-5087 |
DOI: | 10.1007/s10725-005-6396-z |