New design and realization techniques for a class of perfect reconstruction two-channel FIR filterbanks and wavelets bases
This paper proposes two new methods for designing a class of two-channel perfect reconstruction (PR) finite impulse response (FIR) filterbanks (FBs) and wavelets with K-regularity of high order and studies its multiplier-less implementation. It is based on the two-channel structural PR FB proposed b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2004-07, Vol.52 (7), p.2135-2141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes two new methods for designing a class of two-channel perfect reconstruction (PR) finite impulse response (FIR) filterbanks (FBs) and wavelets with K-regularity of high order and studies its multiplier-less implementation. It is based on the two-channel structural PR FB proposed by Phoong et al (1995). The basic principle is to represent the K-regularity condition as a set of linear equality constraints in the design variables so that the least square and minimax design problems can be solved, respectively, as a quadratic programming problem with linear equality constraints (QPLC) and a semidefinite programming (SDP) problem. We also demonstrate that it is always possible to realize such FBs with sum-of-powers-of-two (SOPOT) coefficients while preserving the regularity constraints using Bernstein polynomials. However, this implementation usually requires long coefficient wordlength and another direct-form implementation, which can realize multiplier-less wavelets with K-regularity condition up to fifth order, is proposed. Several design examples are given to demonstrate the effectiveness of the proposed methods. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2004.828918 |