Sulfocarbonitriding of steels with a low-carbon martensite structure
Saturation of steels with interstitial elements in a liquid phase allows creating gradient layers at relatively low temperatures and short durations of the treatment. Rather cheap and ecologically safe compositions for low-temperature nitriding and carbonitriding baths have been developed at the end...
Gespeichert in:
Veröffentlicht in: | Physics of metals and metallography 2006-11, Vol.102 (5), p.528-534 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Saturation of steels with interstitial elements in a liquid phase allows creating gradient layers at relatively low temperatures and short durations of the treatment. Rather cheap and ecologically safe compositions for low-temperature nitriding and carbonitriding baths have been developed at the end of the last century. Improvement of tribotechnical characteristics can be achieved by adding a small amount of sulfur. Layers that have been formed at a low temperature after short-term treatment yield in thickness to those produced by a customary high-temperature long-term thermochemical treatment, and the necessity of subsequent quenching in liquid media creates additional technological and ecological difficulties with processing traditional steels. The use of low-carbon martensitic steels provides noticeable advantages. The activation energy of nitrogen diffusion in a low-carbon martensite is lower in comparison with that in a predominantly ferrite structure, and the quenching of low-carbon martensitic steels does not require the use of liquid cooling media. Austenitizing before quenching improves the uniformity of distribution of alloying elements in a gradient layer and increases its thickness (to several hundreds of microns) due to postnitriding.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0031-918X 1555-6190 |
DOI: | 10.1134/S0031918X06110111 |