Micro-power low-offset instrumentation amplifier IC design for biomedical system applications
This work presents a micro-power low-offset CMOS instrumentation amplifier integrated circuit with a large operating range for biomedical system applications. The equivalent input offset voltage is improved using a new circuit technique of offset cancellation that involves a two-phase clocking schem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2004-04, Vol.51 (4), p.691-699 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a micro-power low-offset CMOS instrumentation amplifier integrated circuit with a large operating range for biomedical system applications. The equivalent input offset voltage is improved using a new circuit technique of offset cancellation that involves a two-phase clocking scheme with a frequency of 20 kHz. Channel charge injection is cancelled by the symmetrical circuit topology. With the wide-swing cascode bias circuit design, this amplifier realizes a very high power-supply rejection ratio (PSRR), and can be operated at single supply voltage in the range between 2.5-7.5 V. It was fabricated using 0.5-/spl mu/m double-poly double-metal n-well CMOS technology, and occupies a die area of 0.2 mm/sup 2/. This amplifier achieves a 160-/spl mu/V typical input offset voltage, 0.05% gain linearity, greater than 102-dB PSRR, an input-referred rms noise voltage of 45 /spl mu/V, and a current consumption of 61 /spl mu/A at a low supply voltage of 2.5 V. Experimental results indicate that the proposed amplifier can process the input electrocardiogram signal of a patient monitoring system and other portable biomedical devices. |
---|---|
ISSN: | 1549-8328 1057-7122 1558-0806 |
DOI: | 10.1109/TCSI.2004.826208 |