Low-order IIR filter bank design

The advantage of infinite-impulse response (IIR) filters over finite-impulse response (FIR) ones is that the former require a much lower order (much fewer multipliers and adders) to obtain the desired response specifications. However, in contrast with well-developed FIR filter bank design theory, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2005-08, Vol.52 (8), p.1673-1683
Hauptverfasser: Hoang Duong Tuan, Son, T.T., Apkarian, P., Nguyen, T.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advantage of infinite-impulse response (IIR) filters over finite-impulse response (FIR) ones is that the former require a much lower order (much fewer multipliers and adders) to obtain the desired response specifications. However, in contrast with well-developed FIR filter bank design theory, there is no satisfactory methodology for IIR filter bank design. The well-known IIR filters are mostly derived by rather heuristic techniques, which work in only narrow design classes. The existing deterministic techniques usually lead to too high order IIR filters and thus cannot be practically used. In this paper, we propose a new method to solve the low-order IIR filter bank design, which is based on tractable linear-matrix inequality (LMI) optimization. Our focus is the quadrature mirror filter bank design, although other IIR filter related problems can be treated and solved in a similar way. The viability of our theoretical development is confirmed by extensive simulation.
ISSN:1549-8328
1057-7122
1558-0806
DOI:10.1109/TCSI.2005.851673